Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+4-3x^{2}=6x+5
Subtract 3x^{2} from both sides.
-2x^{2}+6x+4=6x+5
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+6x+4-6x=5
Subtract 6x from both sides.
-2x^{2}+4=5
Combine 6x and -6x to get 0.
-2x^{2}=5-4
Subtract 4 from both sides.
-2x^{2}=1
Subtract 4 from 5 to get 1.
x^{2}=-\frac{1}{2}
Divide both sides by -2.
x=\frac{\sqrt{2}i}{2} x=-\frac{\sqrt{2}i}{2}
The equation is now solved.
x^{2}+6x+4-3x^{2}=6x+5
Subtract 3x^{2} from both sides.
-2x^{2}+6x+4=6x+5
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+6x+4-6x=5
Subtract 6x from both sides.
-2x^{2}+4=5
Combine 6x and -6x to get 0.
-2x^{2}+4-5=0
Subtract 5 from both sides.
-2x^{2}-1=0
Subtract 5 from 4 to get -1.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Square 0.
x=\frac{0±\sqrt{8\left(-1\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{0±\sqrt{-8}}{2\left(-2\right)}
Multiply 8 times -1.
x=\frac{0±2\sqrt{2}i}{2\left(-2\right)}
Take the square root of -8.
x=\frac{0±2\sqrt{2}i}{-4}
Multiply 2 times -2.
x=-\frac{\sqrt{2}i}{2}
Now solve the equation x=\frac{0±2\sqrt{2}i}{-4} when ± is plus.
x=\frac{\sqrt{2}i}{2}
Now solve the equation x=\frac{0±2\sqrt{2}i}{-4} when ± is minus.
x=-\frac{\sqrt{2}i}{2} x=\frac{\sqrt{2}i}{2}
The equation is now solved.