Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+63x+17=257
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+63x+17-257=257-257
Subtract 257 from both sides of the equation.
x^{2}+63x+17-257=0
Subtracting 257 from itself leaves 0.
x^{2}+63x-240=0
Subtract 257 from 17.
x=\frac{-63±\sqrt{63^{2}-4\left(-240\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 63 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-63±\sqrt{3969-4\left(-240\right)}}{2}
Square 63.
x=\frac{-63±\sqrt{3969+960}}{2}
Multiply -4 times -240.
x=\frac{-63±\sqrt{4929}}{2}
Add 3969 to 960.
x=\frac{\sqrt{4929}-63}{2}
Now solve the equation x=\frac{-63±\sqrt{4929}}{2} when ± is plus. Add -63 to \sqrt{4929}.
x=\frac{-\sqrt{4929}-63}{2}
Now solve the equation x=\frac{-63±\sqrt{4929}}{2} when ± is minus. Subtract \sqrt{4929} from -63.
x=\frac{\sqrt{4929}-63}{2} x=\frac{-\sqrt{4929}-63}{2}
The equation is now solved.
x^{2}+63x+17=257
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+63x+17-17=257-17
Subtract 17 from both sides of the equation.
x^{2}+63x=257-17
Subtracting 17 from itself leaves 0.
x^{2}+63x=240
Subtract 17 from 257.
x^{2}+63x+\left(\frac{63}{2}\right)^{2}=240+\left(\frac{63}{2}\right)^{2}
Divide 63, the coefficient of the x term, by 2 to get \frac{63}{2}. Then add the square of \frac{63}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+63x+\frac{3969}{4}=240+\frac{3969}{4}
Square \frac{63}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+63x+\frac{3969}{4}=\frac{4929}{4}
Add 240 to \frac{3969}{4}.
\left(x+\frac{63}{2}\right)^{2}=\frac{4929}{4}
Factor x^{2}+63x+\frac{3969}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{63}{2}\right)^{2}}=\sqrt{\frac{4929}{4}}
Take the square root of both sides of the equation.
x+\frac{63}{2}=\frac{\sqrt{4929}}{2} x+\frac{63}{2}=-\frac{\sqrt{4929}}{2}
Simplify.
x=\frac{\sqrt{4929}-63}{2} x=\frac{-\sqrt{4929}-63}{2}
Subtract \frac{63}{2} from both sides of the equation.