Solve for x
x=5\sqrt{78}-30\approx 14.158804332
x=-5\sqrt{78}-30\approx -74.158804332
Graph
Share
Copied to clipboard
x^{2}+60x-1050=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\left(-1050\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 60 for b, and -1050 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-1050\right)}}{2}
Square 60.
x=\frac{-60±\sqrt{3600+4200}}{2}
Multiply -4 times -1050.
x=\frac{-60±\sqrt{7800}}{2}
Add 3600 to 4200.
x=\frac{-60±10\sqrt{78}}{2}
Take the square root of 7800.
x=\frac{10\sqrt{78}-60}{2}
Now solve the equation x=\frac{-60±10\sqrt{78}}{2} when ± is plus. Add -60 to 10\sqrt{78}.
x=5\sqrt{78}-30
Divide -60+10\sqrt{78} by 2.
x=\frac{-10\sqrt{78}-60}{2}
Now solve the equation x=\frac{-60±10\sqrt{78}}{2} when ± is minus. Subtract 10\sqrt{78} from -60.
x=-5\sqrt{78}-30
Divide -60-10\sqrt{78} by 2.
x=5\sqrt{78}-30 x=-5\sqrt{78}-30
The equation is now solved.
x^{2}+60x-1050=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+60x-1050-\left(-1050\right)=-\left(-1050\right)
Add 1050 to both sides of the equation.
x^{2}+60x=-\left(-1050\right)
Subtracting -1050 from itself leaves 0.
x^{2}+60x=1050
Subtract -1050 from 0.
x^{2}+60x+30^{2}=1050+30^{2}
Divide 60, the coefficient of the x term, by 2 to get 30. Then add the square of 30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+60x+900=1050+900
Square 30.
x^{2}+60x+900=1950
Add 1050 to 900.
\left(x+30\right)^{2}=1950
Factor x^{2}+60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+30\right)^{2}}=\sqrt{1950}
Take the square root of both sides of the equation.
x+30=5\sqrt{78} x+30=-5\sqrt{78}
Simplify.
x=5\sqrt{78}-30 x=-5\sqrt{78}-30
Subtract 30 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}