Solve for x (complex solution)
x=\sqrt{721}-26\approx 0.851443164
x=-\left(\sqrt{721}+26\right)\approx -52.851443164
Solve for x
x=\sqrt{721}-26\approx 0.851443164
x=-\sqrt{721}-26\approx -52.851443164
Graph
Share
Copied to clipboard
x^{2}+52x-45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-52±\sqrt{52^{2}-4\left(-45\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 52 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-45\right)}}{2}
Square 52.
x=\frac{-52±\sqrt{2704+180}}{2}
Multiply -4 times -45.
x=\frac{-52±\sqrt{2884}}{2}
Add 2704 to 180.
x=\frac{-52±2\sqrt{721}}{2}
Take the square root of 2884.
x=\frac{2\sqrt{721}-52}{2}
Now solve the equation x=\frac{-52±2\sqrt{721}}{2} when ± is plus. Add -52 to 2\sqrt{721}.
x=\sqrt{721}-26
Divide -52+2\sqrt{721} by 2.
x=\frac{-2\sqrt{721}-52}{2}
Now solve the equation x=\frac{-52±2\sqrt{721}}{2} when ± is minus. Subtract 2\sqrt{721} from -52.
x=-\sqrt{721}-26
Divide -52-2\sqrt{721} by 2.
x=\sqrt{721}-26 x=-\sqrt{721}-26
The equation is now solved.
x^{2}+52x-45=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+52x-45-\left(-45\right)=-\left(-45\right)
Add 45 to both sides of the equation.
x^{2}+52x=-\left(-45\right)
Subtracting -45 from itself leaves 0.
x^{2}+52x=45
Subtract -45 from 0.
x^{2}+52x+26^{2}=45+26^{2}
Divide 52, the coefficient of the x term, by 2 to get 26. Then add the square of 26 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+52x+676=45+676
Square 26.
x^{2}+52x+676=721
Add 45 to 676.
\left(x+26\right)^{2}=721
Factor x^{2}+52x+676. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+26\right)^{2}}=\sqrt{721}
Take the square root of both sides of the equation.
x+26=\sqrt{721} x+26=-\sqrt{721}
Simplify.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Subtract 26 from both sides of the equation.
x^{2}+52x-45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-52±\sqrt{52^{2}-4\left(-45\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 52 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-45\right)}}{2}
Square 52.
x=\frac{-52±\sqrt{2704+180}}{2}
Multiply -4 times -45.
x=\frac{-52±\sqrt{2884}}{2}
Add 2704 to 180.
x=\frac{-52±2\sqrt{721}}{2}
Take the square root of 2884.
x=\frac{2\sqrt{721}-52}{2}
Now solve the equation x=\frac{-52±2\sqrt{721}}{2} when ± is plus. Add -52 to 2\sqrt{721}.
x=\sqrt{721}-26
Divide -52+2\sqrt{721} by 2.
x=\frac{-2\sqrt{721}-52}{2}
Now solve the equation x=\frac{-52±2\sqrt{721}}{2} when ± is minus. Subtract 2\sqrt{721} from -52.
x=-\sqrt{721}-26
Divide -52-2\sqrt{721} by 2.
x=\sqrt{721}-26 x=-\sqrt{721}-26
The equation is now solved.
x^{2}+52x-45=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+52x-45-\left(-45\right)=-\left(-45\right)
Add 45 to both sides of the equation.
x^{2}+52x=-\left(-45\right)
Subtracting -45 from itself leaves 0.
x^{2}+52x=45
Subtract -45 from 0.
x^{2}+52x+26^{2}=45+26^{2}
Divide 52, the coefficient of the x term, by 2 to get 26. Then add the square of 26 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+52x+676=45+676
Square 26.
x^{2}+52x+676=721
Add 45 to 676.
\left(x+26\right)^{2}=721
Factor x^{2}+52x+676. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+26\right)^{2}}=\sqrt{721}
Take the square root of both sides of the equation.
x+26=\sqrt{721} x+26=-\sqrt{721}
Simplify.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Subtract 26 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}