Solve for h
h=-\frac{3ex}{x^{2}+3x-1}
x\neq 0\text{ and }x\neq \frac{\sqrt{13}-3}{2}\text{ and }x\neq \frac{-\sqrt{13}-3}{2}
Solve for x
x=\frac{\sqrt{13h^{2}+18eh+9e^{2}}-3h-3e}{2h}
x=-\frac{\sqrt{13h^{2}+18eh+9e^{2}}+3h+3e}{2h}\text{, }h\neq 0
Graph
Share
Copied to clipboard
hx^{2}+4xh+3ex=hx+h
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by h.
hx^{2}+4xh+3ex-hx=h
Subtract hx from both sides.
hx^{2}+3xh+3ex=h
Combine 4xh and -hx to get 3xh.
hx^{2}+3xh+3ex-h=0
Subtract h from both sides.
hx^{2}+3xh-h=-3ex
Subtract 3ex from both sides. Anything subtracted from zero gives its negation.
\left(x^{2}+3x-1\right)h=-3ex
Combine all terms containing h.
\frac{\left(x^{2}+3x-1\right)h}{x^{2}+3x-1}=-\frac{3ex}{x^{2}+3x-1}
Divide both sides by x^{2}+3x-1.
h=-\frac{3ex}{x^{2}+3x-1}
Dividing by x^{2}+3x-1 undoes the multiplication by x^{2}+3x-1.
h=-\frac{3ex}{x^{2}+3x-1}\text{, }h\neq 0
Variable h cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}