Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+49x-364=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-49±\sqrt{49^{2}-4\left(-364\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 49 for b, and -364 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-49±\sqrt{2401-4\left(-364\right)}}{2}
Square 49.
x=\frac{-49±\sqrt{2401+1456}}{2}
Multiply -4 times -364.
x=\frac{-49±\sqrt{3857}}{2}
Add 2401 to 1456.
x=\frac{\sqrt{3857}-49}{2}
Now solve the equation x=\frac{-49±\sqrt{3857}}{2} when ± is plus. Add -49 to \sqrt{3857}.
x=\frac{-\sqrt{3857}-49}{2}
Now solve the equation x=\frac{-49±\sqrt{3857}}{2} when ± is minus. Subtract \sqrt{3857} from -49.
x=\frac{\sqrt{3857}-49}{2} x=\frac{-\sqrt{3857}-49}{2}
The equation is now solved.
x^{2}+49x-364=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+49x-364-\left(-364\right)=-\left(-364\right)
Add 364 to both sides of the equation.
x^{2}+49x=-\left(-364\right)
Subtracting -364 from itself leaves 0.
x^{2}+49x=364
Subtract -364 from 0.
x^{2}+49x+\left(\frac{49}{2}\right)^{2}=364+\left(\frac{49}{2}\right)^{2}
Divide 49, the coefficient of the x term, by 2 to get \frac{49}{2}. Then add the square of \frac{49}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+49x+\frac{2401}{4}=364+\frac{2401}{4}
Square \frac{49}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+49x+\frac{2401}{4}=\frac{3857}{4}
Add 364 to \frac{2401}{4}.
\left(x+\frac{49}{2}\right)^{2}=\frac{3857}{4}
Factor x^{2}+49x+\frac{2401}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{2}\right)^{2}}=\sqrt{\frac{3857}{4}}
Take the square root of both sides of the equation.
x+\frac{49}{2}=\frac{\sqrt{3857}}{2} x+\frac{49}{2}=-\frac{\sqrt{3857}}{2}
Simplify.
x=\frac{\sqrt{3857}-49}{2} x=\frac{-\sqrt{3857}-49}{2}
Subtract \frac{49}{2} from both sides of the equation.