Solve for x
x=8\sqrt{381}-170\approx -13.846229632
x=-8\sqrt{381}-170\approx -326.153770368
Graph
Share
Copied to clipboard
x^{2}+340x+4516=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-340±\sqrt{340^{2}-4\times 4516}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 340 for b, and 4516 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-340±\sqrt{115600-4\times 4516}}{2}
Square 340.
x=\frac{-340±\sqrt{115600-18064}}{2}
Multiply -4 times 4516.
x=\frac{-340±\sqrt{97536}}{2}
Add 115600 to -18064.
x=\frac{-340±16\sqrt{381}}{2}
Take the square root of 97536.
x=\frac{16\sqrt{381}-340}{2}
Now solve the equation x=\frac{-340±16\sqrt{381}}{2} when ± is plus. Add -340 to 16\sqrt{381}.
x=8\sqrt{381}-170
Divide -340+16\sqrt{381} by 2.
x=\frac{-16\sqrt{381}-340}{2}
Now solve the equation x=\frac{-340±16\sqrt{381}}{2} when ± is minus. Subtract 16\sqrt{381} from -340.
x=-8\sqrt{381}-170
Divide -340-16\sqrt{381} by 2.
x=8\sqrt{381}-170 x=-8\sqrt{381}-170
The equation is now solved.
x^{2}+340x+4516=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+340x+4516-4516=-4516
Subtract 4516 from both sides of the equation.
x^{2}+340x=-4516
Subtracting 4516 from itself leaves 0.
x^{2}+340x+170^{2}=-4516+170^{2}
Divide 340, the coefficient of the x term, by 2 to get 170. Then add the square of 170 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+340x+28900=-4516+28900
Square 170.
x^{2}+340x+28900=24384
Add -4516 to 28900.
\left(x+170\right)^{2}=24384
Factor x^{2}+340x+28900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+170\right)^{2}}=\sqrt{24384}
Take the square root of both sides of the equation.
x+170=8\sqrt{381} x+170=-8\sqrt{381}
Simplify.
x=8\sqrt{381}-170 x=-8\sqrt{381}-170
Subtract 170 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}