Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+30x-120=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-30±\sqrt{30^{2}-4\left(-120\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{900-4\left(-120\right)}}{2}
Square 30.
x=\frac{-30±\sqrt{900+480}}{2}
Multiply -4 times -120.
x=\frac{-30±\sqrt{1380}}{2}
Add 900 to 480.
x=\frac{-30±2\sqrt{345}}{2}
Take the square root of 1380.
x=\frac{2\sqrt{345}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{345}}{2} when ± is plus. Add -30 to 2\sqrt{345}.
x=\sqrt{345}-15
Divide -30+2\sqrt{345} by 2.
x=\frac{-2\sqrt{345}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{345}}{2} when ± is minus. Subtract 2\sqrt{345} from -30.
x=-\sqrt{345}-15
Divide -30-2\sqrt{345} by 2.
x^{2}+30x-120=\left(x-\left(\sqrt{345}-15\right)\right)\left(x-\left(-\sqrt{345}-15\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -15+\sqrt{345} for x_{1} and -15-\sqrt{345} for x_{2}.