Solve for x
x=\frac{9\sqrt{154321}-1}{62500000}\approx 0.000056553
x=\frac{-9\sqrt{154321}-1}{62500000}\approx -0.000056585
Graph
Share
Copied to clipboard
x^{2}+3.2\times \frac{1}{100000000}x-3.2\times 10^{-9}=0
Calculate 10 to the power of -8 and get \frac{1}{100000000}.
x^{2}+\frac{1}{31250000}x-3.2\times 10^{-9}=0
Multiply 3.2 and \frac{1}{100000000} to get \frac{1}{31250000}.
x^{2}+\frac{1}{31250000}x-3.2\times \frac{1}{1000000000}=0
Calculate 10 to the power of -9 and get \frac{1}{1000000000}.
x^{2}+\frac{1}{31250000}x-\frac{1}{312500000}=0
Multiply 3.2 and \frac{1}{1000000000} to get \frac{1}{312500000}.
x=\frac{-\frac{1}{31250000}±\sqrt{\left(\frac{1}{31250000}\right)^{2}-4\left(-\frac{1}{312500000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{1}{31250000} for b, and -\frac{1}{312500000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{31250000}±\sqrt{\frac{1}{976562500000000}-4\left(-\frac{1}{312500000}\right)}}{2}
Square \frac{1}{31250000} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{31250000}±\sqrt{\frac{1}{976562500000000}+\frac{1}{78125000}}}{2}
Multiply -4 times -\frac{1}{312500000}.
x=\frac{-\frac{1}{31250000}±\sqrt{\frac{12500001}{976562500000000}}}{2}
Add \frac{1}{976562500000000} to \frac{1}{78125000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{31250000}±\frac{9\sqrt{154321}}{31250000}}{2}
Take the square root of \frac{12500001}{976562500000000}.
x=\frac{9\sqrt{154321}-1}{2\times 31250000}
Now solve the equation x=\frac{-\frac{1}{31250000}±\frac{9\sqrt{154321}}{31250000}}{2} when ± is plus. Add -\frac{1}{31250000} to \frac{9\sqrt{154321}}{31250000}.
x=\frac{9\sqrt{154321}-1}{62500000}
Divide \frac{-1+9\sqrt{154321}}{31250000} by 2.
x=\frac{-9\sqrt{154321}-1}{2\times 31250000}
Now solve the equation x=\frac{-\frac{1}{31250000}±\frac{9\sqrt{154321}}{31250000}}{2} when ± is minus. Subtract \frac{9\sqrt{154321}}{31250000} from -\frac{1}{31250000}.
x=\frac{-9\sqrt{154321}-1}{62500000}
Divide \frac{-1-9\sqrt{154321}}{31250000} by 2.
x=\frac{9\sqrt{154321}-1}{62500000} x=\frac{-9\sqrt{154321}-1}{62500000}
The equation is now solved.
x^{2}+3.2\times \frac{1}{100000000}x-3.2\times 10^{-9}=0
Calculate 10 to the power of -8 and get \frac{1}{100000000}.
x^{2}+\frac{1}{31250000}x-3.2\times 10^{-9}=0
Multiply 3.2 and \frac{1}{100000000} to get \frac{1}{31250000}.
x^{2}+\frac{1}{31250000}x-3.2\times \frac{1}{1000000000}=0
Calculate 10 to the power of -9 and get \frac{1}{1000000000}.
x^{2}+\frac{1}{31250000}x-\frac{1}{312500000}=0
Multiply 3.2 and \frac{1}{1000000000} to get \frac{1}{312500000}.
x^{2}+\frac{1}{31250000}x=\frac{1}{312500000}
Add \frac{1}{312500000} to both sides. Anything plus zero gives itself.
x^{2}+\frac{1}{31250000}x+\left(\frac{1}{62500000}\right)^{2}=\frac{1}{312500000}+\left(\frac{1}{62500000}\right)^{2}
Divide \frac{1}{31250000}, the coefficient of the x term, by 2 to get \frac{1}{62500000}. Then add the square of \frac{1}{62500000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{31250000}x+\frac{1}{3906250000000000}=\frac{1}{312500000}+\frac{1}{3906250000000000}
Square \frac{1}{62500000} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{31250000}x+\frac{1}{3906250000000000}=\frac{12500001}{3906250000000000}
Add \frac{1}{312500000} to \frac{1}{3906250000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{62500000}\right)^{2}=\frac{12500001}{3906250000000000}
Factor x^{2}+\frac{1}{31250000}x+\frac{1}{3906250000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{62500000}\right)^{2}}=\sqrt{\frac{12500001}{3906250000000000}}
Take the square root of both sides of the equation.
x+\frac{1}{62500000}=\frac{9\sqrt{154321}}{62500000} x+\frac{1}{62500000}=-\frac{9\sqrt{154321}}{62500000}
Simplify.
x=\frac{9\sqrt{154321}-1}{62500000} x=\frac{-9\sqrt{154321}-1}{62500000}
Subtract \frac{1}{62500000} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}