Solve for x
x = -\frac{15}{4} = -3\frac{3}{4} = -3.75
x=1
Graph
Quiz
Quadratic Equation
5 problems similar to:
{ x }^{ 2 } +2x-3 = - \frac{ 3 }{ 4 } x+ \frac{ 3 }{ 4 }
Share
Copied to clipboard
x^{2}+2x-3+\frac{3}{4}x=\frac{3}{4}
Add \frac{3}{4}x to both sides.
x^{2}+\frac{11}{4}x-3=\frac{3}{4}
Combine 2x and \frac{3}{4}x to get \frac{11}{4}x.
x^{2}+\frac{11}{4}x-3-\frac{3}{4}=0
Subtract \frac{3}{4} from both sides.
x^{2}+\frac{11}{4}x-\frac{15}{4}=0
Subtract \frac{3}{4} from -3 to get -\frac{15}{4}.
x=\frac{-\frac{11}{4}±\sqrt{\left(\frac{11}{4}\right)^{2}-4\left(-\frac{15}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{11}{4} for b, and -\frac{15}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{11}{4}±\sqrt{\frac{121}{16}-4\left(-\frac{15}{4}\right)}}{2}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{11}{4}±\sqrt{\frac{121}{16}+15}}{2}
Multiply -4 times -\frac{15}{4}.
x=\frac{-\frac{11}{4}±\sqrt{\frac{361}{16}}}{2}
Add \frac{121}{16} to 15.
x=\frac{-\frac{11}{4}±\frac{19}{4}}{2}
Take the square root of \frac{361}{16}.
x=\frac{2}{2}
Now solve the equation x=\frac{-\frac{11}{4}±\frac{19}{4}}{2} when ± is plus. Add -\frac{11}{4} to \frac{19}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1
Divide 2 by 2.
x=-\frac{\frac{15}{2}}{2}
Now solve the equation x=\frac{-\frac{11}{4}±\frac{19}{4}}{2} when ± is minus. Subtract \frac{19}{4} from -\frac{11}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{15}{4}
Divide -\frac{15}{2} by 2.
x=1 x=-\frac{15}{4}
The equation is now solved.
x^{2}+2x-3+\frac{3}{4}x=\frac{3}{4}
Add \frac{3}{4}x to both sides.
x^{2}+\frac{11}{4}x-3=\frac{3}{4}
Combine 2x and \frac{3}{4}x to get \frac{11}{4}x.
x^{2}+\frac{11}{4}x=\frac{3}{4}+3
Add 3 to both sides.
x^{2}+\frac{11}{4}x=\frac{15}{4}
Add \frac{3}{4} and 3 to get \frac{15}{4}.
x^{2}+\frac{11}{4}x+\left(\frac{11}{8}\right)^{2}=\frac{15}{4}+\left(\frac{11}{8}\right)^{2}
Divide \frac{11}{4}, the coefficient of the x term, by 2 to get \frac{11}{8}. Then add the square of \frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{15}{4}+\frac{121}{64}
Square \frac{11}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{361}{64}
Add \frac{15}{4} to \frac{121}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{8}\right)^{2}=\frac{361}{64}
Factor x^{2}+\frac{11}{4}x+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{8}\right)^{2}}=\sqrt{\frac{361}{64}}
Take the square root of both sides of the equation.
x+\frac{11}{8}=\frac{19}{8} x+\frac{11}{8}=-\frac{19}{8}
Simplify.
x=1 x=-\frac{15}{4}
Subtract \frac{11}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}