Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+18+64-16x+x^{2}=64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
x^{2}+82-16x+x^{2}=64
Add 18 and 64 to get 82.
2x^{2}+82-16x=64
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+82-16x-64=0
Subtract 64 from both sides.
2x^{2}+18-16x=0
Subtract 64 from 82 to get 18.
2x^{2}-16x+18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 2\times 18}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -16 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 2\times 18}}{2\times 2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-8\times 18}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-16\right)±\sqrt{256-144}}{2\times 2}
Multiply -8 times 18.
x=\frac{-\left(-16\right)±\sqrt{112}}{2\times 2}
Add 256 to -144.
x=\frac{-\left(-16\right)±4\sqrt{7}}{2\times 2}
Take the square root of 112.
x=\frac{16±4\sqrt{7}}{2\times 2}
The opposite of -16 is 16.
x=\frac{16±4\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{7}+16}{4}
Now solve the equation x=\frac{16±4\sqrt{7}}{4} when ± is plus. Add 16 to 4\sqrt{7}.
x=\sqrt{7}+4
Divide 16+4\sqrt{7} by 4.
x=\frac{16-4\sqrt{7}}{4}
Now solve the equation x=\frac{16±4\sqrt{7}}{4} when ± is minus. Subtract 4\sqrt{7} from 16.
x=4-\sqrt{7}
Divide 16-4\sqrt{7} by 4.
x=\sqrt{7}+4 x=4-\sqrt{7}
The equation is now solved.
x^{2}+18+64-16x+x^{2}=64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
x^{2}+82-16x+x^{2}=64
Add 18 and 64 to get 82.
2x^{2}+82-16x=64
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-16x=64-82
Subtract 82 from both sides.
2x^{2}-16x=-18
Subtract 82 from 64 to get -18.
\frac{2x^{2}-16x}{2}=-\frac{18}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{16}{2}\right)x=-\frac{18}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-8x=-\frac{18}{2}
Divide -16 by 2.
x^{2}-8x=-9
Divide -18 by 2.
x^{2}-8x+\left(-4\right)^{2}=-9+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-9+16
Square -4.
x^{2}-8x+16=7
Add -9 to 16.
\left(x-4\right)^{2}=7
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x-4=\sqrt{7} x-4=-\sqrt{7}
Simplify.
x=\sqrt{7}+4 x=4-\sqrt{7}
Add 4 to both sides of the equation.