Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+16x+32=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\times 32}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\times 32}}{2}
Square 16.
x=\frac{-16±\sqrt{256-128}}{2}
Multiply -4 times 32.
x=\frac{-16±\sqrt{128}}{2}
Add 256 to -128.
x=\frac{-16±8\sqrt{2}}{2}
Take the square root of 128.
x=\frac{8\sqrt{2}-16}{2}
Now solve the equation x=\frac{-16±8\sqrt{2}}{2} when ± is plus. Add -16 to 8\sqrt{2}.
x=4\sqrt{2}-8
Divide -16+8\sqrt{2} by 2.
x=\frac{-8\sqrt{2}-16}{2}
Now solve the equation x=\frac{-16±8\sqrt{2}}{2} when ± is minus. Subtract 8\sqrt{2} from -16.
x=-4\sqrt{2}-8
Divide -16-8\sqrt{2} by 2.
x^{2}+16x+32=\left(x-\left(4\sqrt{2}-8\right)\right)\left(x-\left(-4\sqrt{2}-8\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -8+4\sqrt{2} for x_{1} and -8-4\sqrt{2} for x_{2}.