Solve for x (complex solution)
x=\sqrt{5015}-72\approx -1.183335295
x=-\left(\sqrt{5015}+72\right)\approx -142.816664705
Solve for x
x=\sqrt{5015}-72\approx -1.183335295
x=-\sqrt{5015}-72\approx -142.816664705
Graph
Share
Copied to clipboard
x^{2}+144x+169=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-144±\sqrt{144^{2}-4\times 169}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 144 for b, and 169 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-144±\sqrt{20736-4\times 169}}{2}
Square 144.
x=\frac{-144±\sqrt{20736-676}}{2}
Multiply -4 times 169.
x=\frac{-144±\sqrt{20060}}{2}
Add 20736 to -676.
x=\frac{-144±2\sqrt{5015}}{2}
Take the square root of 20060.
x=\frac{2\sqrt{5015}-144}{2}
Now solve the equation x=\frac{-144±2\sqrt{5015}}{2} when ± is plus. Add -144 to 2\sqrt{5015}.
x=\sqrt{5015}-72
Divide -144+2\sqrt{5015} by 2.
x=\frac{-2\sqrt{5015}-144}{2}
Now solve the equation x=\frac{-144±2\sqrt{5015}}{2} when ± is minus. Subtract 2\sqrt{5015} from -144.
x=-\sqrt{5015}-72
Divide -144-2\sqrt{5015} by 2.
x=\sqrt{5015}-72 x=-\sqrt{5015}-72
The equation is now solved.
x^{2}+144x+169=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+144x+169-169=-169
Subtract 169 from both sides of the equation.
x^{2}+144x=-169
Subtracting 169 from itself leaves 0.
x^{2}+144x+72^{2}=-169+72^{2}
Divide 144, the coefficient of the x term, by 2 to get 72. Then add the square of 72 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+144x+5184=-169+5184
Square 72.
x^{2}+144x+5184=5015
Add -169 to 5184.
\left(x+72\right)^{2}=5015
Factor x^{2}+144x+5184. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+72\right)^{2}}=\sqrt{5015}
Take the square root of both sides of the equation.
x+72=\sqrt{5015} x+72=-\sqrt{5015}
Simplify.
x=\sqrt{5015}-72 x=-\sqrt{5015}-72
Subtract 72 from both sides of the equation.
x^{2}+144x+169=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-144±\sqrt{144^{2}-4\times 169}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 144 for b, and 169 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-144±\sqrt{20736-4\times 169}}{2}
Square 144.
x=\frac{-144±\sqrt{20736-676}}{2}
Multiply -4 times 169.
x=\frac{-144±\sqrt{20060}}{2}
Add 20736 to -676.
x=\frac{-144±2\sqrt{5015}}{2}
Take the square root of 20060.
x=\frac{2\sqrt{5015}-144}{2}
Now solve the equation x=\frac{-144±2\sqrt{5015}}{2} when ± is plus. Add -144 to 2\sqrt{5015}.
x=\sqrt{5015}-72
Divide -144+2\sqrt{5015} by 2.
x=\frac{-2\sqrt{5015}-144}{2}
Now solve the equation x=\frac{-144±2\sqrt{5015}}{2} when ± is minus. Subtract 2\sqrt{5015} from -144.
x=-\sqrt{5015}-72
Divide -144-2\sqrt{5015} by 2.
x=\sqrt{5015}-72 x=-\sqrt{5015}-72
The equation is now solved.
x^{2}+144x+169=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+144x+169-169=-169
Subtract 169 from both sides of the equation.
x^{2}+144x=-169
Subtracting 169 from itself leaves 0.
x^{2}+144x+72^{2}=-169+72^{2}
Divide 144, the coefficient of the x term, by 2 to get 72. Then add the square of 72 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+144x+5184=-169+5184
Square 72.
x^{2}+144x+5184=5015
Add -169 to 5184.
\left(x+72\right)^{2}=5015
Factor x^{2}+144x+5184. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+72\right)^{2}}=\sqrt{5015}
Take the square root of both sides of the equation.
x+72=\sqrt{5015} x+72=-\sqrt{5015}
Simplify.
x=\sqrt{5015}-72 x=-\sqrt{5015}-72
Subtract 72 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}