Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+12x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-9\right)}}{2}
Square 12.
x=\frac{-12±\sqrt{144+36}}{2}
Multiply -4 times -9.
x=\frac{-12±\sqrt{180}}{2}
Add 144 to 36.
x=\frac{-12±6\sqrt{5}}{2}
Take the square root of 180.
x=\frac{6\sqrt{5}-12}{2}
Now solve the equation x=\frac{-12±6\sqrt{5}}{2} when ± is plus. Add -12 to 6\sqrt{5}.
x=3\sqrt{5}-6
Divide -12+6\sqrt{5} by 2.
x=\frac{-6\sqrt{5}-12}{2}
Now solve the equation x=\frac{-12±6\sqrt{5}}{2} when ± is minus. Subtract 6\sqrt{5} from -12.
x=-3\sqrt{5}-6
Divide -12-6\sqrt{5} by 2.
x^{2}+12x-9=\left(x-\left(3\sqrt{5}-6\right)\right)\left(x-\left(-3\sqrt{5}-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6+3\sqrt{5} for x_{1} and -6-3\sqrt{5} for x_{2}.