Factor
\left(x-3\right)\left(x+15\right)
Evaluate
\left(x-3\right)\left(x+15\right)
Graph
Share
Copied to clipboard
a+b=12 ab=1\left(-45\right)=-45
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-45. To find a and b, set up a system to be solved.
-1,45 -3,15 -5,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -45.
-1+45=44 -3+15=12 -5+9=4
Calculate the sum for each pair.
a=-3 b=15
The solution is the pair that gives sum 12.
\left(x^{2}-3x\right)+\left(15x-45\right)
Rewrite x^{2}+12x-45 as \left(x^{2}-3x\right)+\left(15x-45\right).
x\left(x-3\right)+15\left(x-3\right)
Factor out x in the first and 15 in the second group.
\left(x-3\right)\left(x+15\right)
Factor out common term x-3 by using distributive property.
x^{2}+12x-45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-45\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-45\right)}}{2}
Square 12.
x=\frac{-12±\sqrt{144+180}}{2}
Multiply -4 times -45.
x=\frac{-12±\sqrt{324}}{2}
Add 144 to 180.
x=\frac{-12±18}{2}
Take the square root of 324.
x=\frac{6}{2}
Now solve the equation x=\frac{-12±18}{2} when ± is plus. Add -12 to 18.
x=3
Divide 6 by 2.
x=-\frac{30}{2}
Now solve the equation x=\frac{-12±18}{2} when ± is minus. Subtract 18 from -12.
x=-15
Divide -30 by 2.
x^{2}+12x-45=\left(x-3\right)\left(x-\left(-15\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -15 for x_{2}.
x^{2}+12x-45=\left(x-3\right)\left(x+15\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}