Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+12x+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 14}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\times 14}}{2}
Square 12.
x=\frac{-12±\sqrt{144-56}}{2}
Multiply -4 times 14.
x=\frac{-12±\sqrt{88}}{2}
Add 144 to -56.
x=\frac{-12±2\sqrt{22}}{2}
Take the square root of 88.
x=\frac{2\sqrt{22}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{22}}{2} when ± is plus. Add -12 to 2\sqrt{22}.
x=\sqrt{22}-6
Divide -12+2\sqrt{22} by 2.
x=\frac{-2\sqrt{22}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{22}}{2} when ± is minus. Subtract 2\sqrt{22} from -12.
x=-\sqrt{22}-6
Divide -12-2\sqrt{22} by 2.
x^{2}+12x+14=\left(x-\left(\sqrt{22}-6\right)\right)\left(x-\left(-\sqrt{22}-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6+\sqrt{22} for x_{1} and -6-\sqrt{22} for x_{2}.