Solve for x
x=20\sqrt{19}-60\approx 27.177978871
x=-20\sqrt{19}-60\approx -147.177978871
Graph
Share
Copied to clipboard
x^{2}+120x-4000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-120±\sqrt{120^{2}-4\left(-4000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 120 for b, and -4000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-120±\sqrt{14400-4\left(-4000\right)}}{2}
Square 120.
x=\frac{-120±\sqrt{14400+16000}}{2}
Multiply -4 times -4000.
x=\frac{-120±\sqrt{30400}}{2}
Add 14400 to 16000.
x=\frac{-120±40\sqrt{19}}{2}
Take the square root of 30400.
x=\frac{40\sqrt{19}-120}{2}
Now solve the equation x=\frac{-120±40\sqrt{19}}{2} when ± is plus. Add -120 to 40\sqrt{19}.
x=20\sqrt{19}-60
Divide -120+40\sqrt{19} by 2.
x=\frac{-40\sqrt{19}-120}{2}
Now solve the equation x=\frac{-120±40\sqrt{19}}{2} when ± is minus. Subtract 40\sqrt{19} from -120.
x=-20\sqrt{19}-60
Divide -120-40\sqrt{19} by 2.
x=20\sqrt{19}-60 x=-20\sqrt{19}-60
The equation is now solved.
x^{2}+120x-4000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+120x-4000-\left(-4000\right)=-\left(-4000\right)
Add 4000 to both sides of the equation.
x^{2}+120x=-\left(-4000\right)
Subtracting -4000 from itself leaves 0.
x^{2}+120x=4000
Subtract -4000 from 0.
x^{2}+120x+60^{2}=4000+60^{2}
Divide 120, the coefficient of the x term, by 2 to get 60. Then add the square of 60 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+120x+3600=4000+3600
Square 60.
x^{2}+120x+3600=7600
Add 4000 to 3600.
\left(x+60\right)^{2}=7600
Factor x^{2}+120x+3600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+60\right)^{2}}=\sqrt{7600}
Take the square root of both sides of the equation.
x+60=20\sqrt{19} x+60=-20\sqrt{19}
Simplify.
x=20\sqrt{19}-60 x=-20\sqrt{19}-60
Subtract 60 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}