Solve for y
y=-x-9-\frac{16}{x}
x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{\left(y+1\right)\left(y+17\right)}-y-9}{2}
x=\frac{-\sqrt{\left(y+1\right)\left(y+17\right)}-y-9}{2}
Solve for x
x=\frac{\sqrt{\left(y+1\right)\left(y+17\right)}-y-9}{2}
x=\frac{-\sqrt{\left(y+1\right)\left(y+17\right)}-y-9}{2}\text{, }y\leq -17\text{ or }y\geq -1
Graph
Share
Copied to clipboard
x^{2}+9x+yx+16=0
Use the distributive property to multiply 9+y by x.
9x+yx+16=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
yx+16=-x^{2}-9x
Subtract 9x from both sides.
yx=-x^{2}-9x-16
Subtract 16 from both sides.
xy=-x^{2}-9x-16
The equation is in standard form.
\frac{xy}{x}=\frac{-x^{2}-9x-16}{x}
Divide both sides by x.
y=\frac{-x^{2}-9x-16}{x}
Dividing by x undoes the multiplication by x.
y=-x-9-\frac{16}{x}
Divide -x^{2}-9x-16 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}