Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+81-18x+x^{2}=6^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x\right)^{2}.
2x^{2}+81-18x=6^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+81-18x=36
Calculate 6 to the power of 2 and get 36.
2x^{2}+81-18x-36=0
Subtract 36 from both sides.
2x^{2}+45-18x=0
Subtract 36 from 81 to get 45.
2x^{2}-18x+45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 45}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -18 for b, and 45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 45}}{2\times 2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-8\times 45}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-18\right)±\sqrt{324-360}}{2\times 2}
Multiply -8 times 45.
x=\frac{-\left(-18\right)±\sqrt{-36}}{2\times 2}
Add 324 to -360.
x=\frac{-\left(-18\right)±6i}{2\times 2}
Take the square root of -36.
x=\frac{18±6i}{2\times 2}
The opposite of -18 is 18.
x=\frac{18±6i}{4}
Multiply 2 times 2.
x=\frac{18+6i}{4}
Now solve the equation x=\frac{18±6i}{4} when ± is plus. Add 18 to 6i.
x=\frac{9}{2}+\frac{3}{2}i
Divide 18+6i by 4.
x=\frac{18-6i}{4}
Now solve the equation x=\frac{18±6i}{4} when ± is minus. Subtract 6i from 18.
x=\frac{9}{2}-\frac{3}{2}i
Divide 18-6i by 4.
x=\frac{9}{2}+\frac{3}{2}i x=\frac{9}{2}-\frac{3}{2}i
The equation is now solved.
x^{2}+81-18x+x^{2}=6^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x\right)^{2}.
2x^{2}+81-18x=6^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+81-18x=36
Calculate 6 to the power of 2 and get 36.
2x^{2}-18x=36-81
Subtract 81 from both sides.
2x^{2}-18x=-45
Subtract 81 from 36 to get -45.
\frac{2x^{2}-18x}{2}=-\frac{45}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{18}{2}\right)x=-\frac{45}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-9x=-\frac{45}{2}
Divide -18 by 2.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{45}{2}+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-\frac{45}{2}+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=-\frac{9}{4}
Add -\frac{45}{2} to \frac{81}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{2}\right)^{2}=-\frac{9}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{-\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{3}{2}i x-\frac{9}{2}=-\frac{3}{2}i
Simplify.
x=\frac{9}{2}+\frac{3}{2}i x=\frac{9}{2}-\frac{3}{2}i
Add \frac{9}{2} to both sides of the equation.