Solve for x
x = \frac{\sqrt{23} + 7}{4} \approx 2.948957881
x=\frac{7-\sqrt{23}}{4}\approx 0.551042119
Graph
Share
Copied to clipboard
x^{2}+12.25-7x+x^{2}=9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3.5-x\right)^{2}.
2x^{2}+12.25-7x=9
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+12.25-7x-9=0
Subtract 9 from both sides.
2x^{2}+3.25-7x=0
Subtract 9 from 12.25 to get 3.25.
2x^{2}-7x+3.25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 3.25}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and 3.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 3.25}}{2\times 2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\times 3.25}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-7\right)±\sqrt{49-26}}{2\times 2}
Multiply -8 times 3.25.
x=\frac{-\left(-7\right)±\sqrt{23}}{2\times 2}
Add 49 to -26.
x=\frac{7±\sqrt{23}}{2\times 2}
The opposite of -7 is 7.
x=\frac{7±\sqrt{23}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{23}+7}{4}
Now solve the equation x=\frac{7±\sqrt{23}}{4} when ± is plus. Add 7 to \sqrt{23}.
x=\frac{7-\sqrt{23}}{4}
Now solve the equation x=\frac{7±\sqrt{23}}{4} when ± is minus. Subtract \sqrt{23} from 7.
x=\frac{\sqrt{23}+7}{4} x=\frac{7-\sqrt{23}}{4}
The equation is now solved.
x^{2}+12.25-7x+x^{2}=9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3.5-x\right)^{2}.
2x^{2}+12.25-7x=9
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-7x=9-12.25
Subtract 12.25 from both sides.
2x^{2}-7x=-3.25
Subtract 12.25 from 9 to get -3.25.
\frac{2x^{2}-7x}{2}=-\frac{3.25}{2}
Divide both sides by 2.
x^{2}-\frac{7}{2}x=-\frac{3.25}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{7}{2}x=-1.625
Divide -3.25 by 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-1.625+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-1.625+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{23}{16}
Add -1.625 to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{23}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{23}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{23}}{4} x-\frac{7}{4}=-\frac{\sqrt{23}}{4}
Simplify.
x=\frac{\sqrt{23}+7}{4} x=\frac{7-\sqrt{23}}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}