Solve for x
x=\sqrt{7}\approx 2.645751311
x=-\sqrt{7}\approx -2.645751311
Graph
Share
Copied to clipboard
\sqrt{x^{2}-3}=9-x^{2}
Subtract x^{2} from both sides of the equation.
\left(\sqrt{x^{2}-3}\right)^{2}=\left(9-x^{2}\right)^{2}
Square both sides of the equation.
x^{2}-3=\left(9-x^{2}\right)^{2}
Calculate \sqrt{x^{2}-3} to the power of 2 and get x^{2}-3.
x^{2}-3=81-18x^{2}+\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x^{2}\right)^{2}.
x^{2}-3=81-18x^{2}+x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}-3-81=-18x^{2}+x^{4}
Subtract 81 from both sides.
x^{2}-84=-18x^{2}+x^{4}
Subtract 81 from -3 to get -84.
x^{2}-84+18x^{2}=x^{4}
Add 18x^{2} to both sides.
19x^{2}-84=x^{4}
Combine x^{2} and 18x^{2} to get 19x^{2}.
19x^{2}-84-x^{4}=0
Subtract x^{4} from both sides.
-t^{2}+19t-84=0
Substitute t for x^{2}.
t=\frac{-19±\sqrt{19^{2}-4\left(-1\right)\left(-84\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 19 for b, and -84 for c in the quadratic formula.
t=\frac{-19±5}{-2}
Do the calculations.
t=7 t=12
Solve the equation t=\frac{-19±5}{-2} when ± is plus and when ± is minus.
x=\sqrt{7} x=-\sqrt{7} x=2\sqrt{3} x=-2\sqrt{3}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(\sqrt{7}\right)^{2}+\sqrt{\left(\sqrt{7}\right)^{2}-3}=9
Substitute \sqrt{7} for x in the equation x^{2}+\sqrt{x^{2}-3}=9.
9=9
Simplify. The value x=\sqrt{7} satisfies the equation.
\left(-\sqrt{7}\right)^{2}+\sqrt{\left(-\sqrt{7}\right)^{2}-3}=9
Substitute -\sqrt{7} for x in the equation x^{2}+\sqrt{x^{2}-3}=9.
9=9
Simplify. The value x=-\sqrt{7} satisfies the equation.
\left(2\sqrt{3}\right)^{2}+\sqrt{\left(2\sqrt{3}\right)^{2}-3}=9
Substitute 2\sqrt{3} for x in the equation x^{2}+\sqrt{x^{2}-3}=9.
15=9
Simplify. The value x=2\sqrt{3} does not satisfy the equation.
\left(-2\sqrt{3}\right)^{2}+\sqrt{\left(-2\sqrt{3}\right)^{2}-3}=9
Substitute -2\sqrt{3} for x in the equation x^{2}+\sqrt{x^{2}-3}=9.
15=9
Simplify. The value x=-2\sqrt{3} does not satisfy the equation.
x=\sqrt{7} x=-\sqrt{7}
List all solutions of \sqrt{x^{2}-3}=9-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}