Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x^{2}-3}=9-x^{2}
Subtract x^{2} from both sides of the equation.
\left(\sqrt{x^{2}-3}\right)^{2}=\left(9-x^{2}\right)^{2}
Square both sides of the equation.
x^{2}-3=\left(9-x^{2}\right)^{2}
Calculate \sqrt{x^{2}-3} to the power of 2 and get x^{2}-3.
x^{2}-3=81-18x^{2}+\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x^{2}\right)^{2}.
x^{2}-3=81-18x^{2}+x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}-3-81=-18x^{2}+x^{4}
Subtract 81 from both sides.
x^{2}-84=-18x^{2}+x^{4}
Subtract 81 from -3 to get -84.
x^{2}-84+18x^{2}=x^{4}
Add 18x^{2} to both sides.
19x^{2}-84=x^{4}
Combine x^{2} and 18x^{2} to get 19x^{2}.
19x^{2}-84-x^{4}=0
Subtract x^{4} from both sides.
-t^{2}+19t-84=0
Substitute t for x^{2}.
t=\frac{-19±\sqrt{19^{2}-4\left(-1\right)\left(-84\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 19 for b, and -84 for c in the quadratic formula.
t=\frac{-19±5}{-2}
Do the calculations.
t=7 t=12
Solve the equation t=\frac{-19±5}{-2} when ± is plus and when ± is minus.
x=\sqrt{7} x=-\sqrt{7} x=2\sqrt{3} x=-2\sqrt{3}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(\sqrt{7}\right)^{2}+\sqrt{\left(\sqrt{7}\right)^{2}-3}=9
Substitute \sqrt{7} for x in the equation x^{2}+\sqrt{x^{2}-3}=9.
9=9
Simplify. The value x=\sqrt{7} satisfies the equation.
\left(-\sqrt{7}\right)^{2}+\sqrt{\left(-\sqrt{7}\right)^{2}-3}=9
Substitute -\sqrt{7} for x in the equation x^{2}+\sqrt{x^{2}-3}=9.
9=9
Simplify. The value x=-\sqrt{7} satisfies the equation.
\left(2\sqrt{3}\right)^{2}+\sqrt{\left(2\sqrt{3}\right)^{2}-3}=9
Substitute 2\sqrt{3} for x in the equation x^{2}+\sqrt{x^{2}-3}=9.
15=9
Simplify. The value x=2\sqrt{3} does not satisfy the equation.
\left(-2\sqrt{3}\right)^{2}+\sqrt{\left(-2\sqrt{3}\right)^{2}-3}=9
Substitute -2\sqrt{3} for x in the equation x^{2}+\sqrt{x^{2}-3}=9.
15=9
Simplify. The value x=-2\sqrt{3} does not satisfy the equation.
x=\sqrt{7} x=-\sqrt{7}
List all solutions of \sqrt{x^{2}-3}=9-x^{2}.