Solve for x
x = \frac{4 \sqrt{7} + 16}{3} \approx 8.861001748
x = \frac{16 - 4 \sqrt{7}}{3} \approx 1.805664919
Graph
Share
Copied to clipboard
x^{2}-4x^{2}=-32x+48
Subtract 4x^{2} from both sides.
-3x^{2}=-32x+48
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+32x=48
Add 32x to both sides.
-3x^{2}+32x-48=0
Subtract 48 from both sides.
x=\frac{-32±\sqrt{32^{2}-4\left(-3\right)\left(-48\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 32 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-3\right)\left(-48\right)}}{2\left(-3\right)}
Square 32.
x=\frac{-32±\sqrt{1024+12\left(-48\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-32±\sqrt{1024-576}}{2\left(-3\right)}
Multiply 12 times -48.
x=\frac{-32±\sqrt{448}}{2\left(-3\right)}
Add 1024 to -576.
x=\frac{-32±8\sqrt{7}}{2\left(-3\right)}
Take the square root of 448.
x=\frac{-32±8\sqrt{7}}{-6}
Multiply 2 times -3.
x=\frac{8\sqrt{7}-32}{-6}
Now solve the equation x=\frac{-32±8\sqrt{7}}{-6} when ± is plus. Add -32 to 8\sqrt{7}.
x=\frac{16-4\sqrt{7}}{3}
Divide -32+8\sqrt{7} by -6.
x=\frac{-8\sqrt{7}-32}{-6}
Now solve the equation x=\frac{-32±8\sqrt{7}}{-6} when ± is minus. Subtract 8\sqrt{7} from -32.
x=\frac{4\sqrt{7}+16}{3}
Divide -32-8\sqrt{7} by -6.
x=\frac{16-4\sqrt{7}}{3} x=\frac{4\sqrt{7}+16}{3}
The equation is now solved.
x^{2}-4x^{2}=-32x+48
Subtract 4x^{2} from both sides.
-3x^{2}=-32x+48
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+32x=48
Add 32x to both sides.
\frac{-3x^{2}+32x}{-3}=\frac{48}{-3}
Divide both sides by -3.
x^{2}+\frac{32}{-3}x=\frac{48}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{32}{3}x=\frac{48}{-3}
Divide 32 by -3.
x^{2}-\frac{32}{3}x=-16
Divide 48 by -3.
x^{2}-\frac{32}{3}x+\left(-\frac{16}{3}\right)^{2}=-16+\left(-\frac{16}{3}\right)^{2}
Divide -\frac{32}{3}, the coefficient of the x term, by 2 to get -\frac{16}{3}. Then add the square of -\frac{16}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{3}x+\frac{256}{9}=-16+\frac{256}{9}
Square -\frac{16}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{3}x+\frac{256}{9}=\frac{112}{9}
Add -16 to \frac{256}{9}.
\left(x-\frac{16}{3}\right)^{2}=\frac{112}{9}
Factor x^{2}-\frac{32}{3}x+\frac{256}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{3}\right)^{2}}=\sqrt{\frac{112}{9}}
Take the square root of both sides of the equation.
x-\frac{16}{3}=\frac{4\sqrt{7}}{3} x-\frac{16}{3}=-\frac{4\sqrt{7}}{3}
Simplify.
x=\frac{4\sqrt{7}+16}{3} x=\frac{16-4\sqrt{7}}{3}
Add \frac{16}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}