Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+8x^{-1}=5
Calculate x to the power of 1 and get x.
x+8x^{-1}-5=0
Subtract 5 from both sides.
x-5+8\times \frac{1}{x}=0
Reorder the terms.
xx+x\left(-5\right)+8\times 1=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+x\left(-5\right)+8\times 1=0
Multiply x and x to get x^{2}.
x^{2}+x\left(-5\right)+8=0
Multiply 8 and 1 to get 8.
x^{2}-5x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 8}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-32}}{2}
Multiply -4 times 8.
x=\frac{-\left(-5\right)±\sqrt{-7}}{2}
Add 25 to -32.
x=\frac{-\left(-5\right)±\sqrt{7}i}{2}
Take the square root of -7.
x=\frac{5±\sqrt{7}i}{2}
The opposite of -5 is 5.
x=\frac{5+\sqrt{7}i}{2}
Now solve the equation x=\frac{5±\sqrt{7}i}{2} when ± is plus. Add 5 to i\sqrt{7}.
x=\frac{-\sqrt{7}i+5}{2}
Now solve the equation x=\frac{5±\sqrt{7}i}{2} when ± is minus. Subtract i\sqrt{7} from 5.
x=\frac{5+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i+5}{2}
The equation is now solved.
x+8x^{-1}=5
Calculate x to the power of 1 and get x.
x+8\times \frac{1}{x}=5
Reorder the terms.
xx+8\times 1=5x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+8\times 1=5x
Multiply x and x to get x^{2}.
x^{2}+8=5x
Multiply 8 and 1 to get 8.
x^{2}+8-5x=0
Subtract 5x from both sides.
x^{2}-5x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-8+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-8+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{7}{4}
Add -8 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=-\frac{7}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{7}i}{2} x-\frac{5}{2}=-\frac{\sqrt{7}i}{2}
Simplify.
x=\frac{5+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i+5}{2}
Add \frac{5}{2} to both sides of the equation.