Solve for t
t=\frac{\sqrt{94245}}{122}-\frac{5}{2}\approx 0.016340043
t=-\frac{\sqrt{94245}}{122}-\frac{5}{2}\approx -5.016340043
Share
Copied to clipboard
t^{2}+5t-\frac{5}{61}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-5±\sqrt{5^{2}-4\left(-\frac{5}{61}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and -\frac{5}{61} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\left(-\frac{5}{61}\right)}}{2}
Square 5.
t=\frac{-5±\sqrt{25+\frac{20}{61}}}{2}
Multiply -4 times -\frac{5}{61}.
t=\frac{-5±\sqrt{\frac{1545}{61}}}{2}
Add 25 to \frac{20}{61}.
t=\frac{-5±\frac{\sqrt{94245}}{61}}{2}
Take the square root of \frac{1545}{61}.
t=\frac{\frac{\sqrt{94245}}{61}-5}{2}
Now solve the equation t=\frac{-5±\frac{\sqrt{94245}}{61}}{2} when ± is plus. Add -5 to \frac{\sqrt{94245}}{61}.
t=\frac{\sqrt{94245}}{122}-\frac{5}{2}
Divide -5+\frac{\sqrt{94245}}{61} by 2.
t=\frac{-\frac{\sqrt{94245}}{61}-5}{2}
Now solve the equation t=\frac{-5±\frac{\sqrt{94245}}{61}}{2} when ± is minus. Subtract \frac{\sqrt{94245}}{61} from -5.
t=-\frac{\sqrt{94245}}{122}-\frac{5}{2}
Divide -5-\frac{\sqrt{94245}}{61} by 2.
t=\frac{\sqrt{94245}}{122}-\frac{5}{2} t=-\frac{\sqrt{94245}}{122}-\frac{5}{2}
The equation is now solved.
t^{2}+5t-\frac{5}{61}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}+5t-\frac{5}{61}-\left(-\frac{5}{61}\right)=-\left(-\frac{5}{61}\right)
Add \frac{5}{61} to both sides of the equation.
t^{2}+5t=-\left(-\frac{5}{61}\right)
Subtracting -\frac{5}{61} from itself leaves 0.
t^{2}+5t=\frac{5}{61}
Subtract -\frac{5}{61} from 0.
t^{2}+5t+\left(\frac{5}{2}\right)^{2}=\frac{5}{61}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+5t+\frac{25}{4}=\frac{5}{61}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}+5t+\frac{25}{4}=\frac{1545}{244}
Add \frac{5}{61} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{5}{2}\right)^{2}=\frac{1545}{244}
Factor t^{2}+5t+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1545}{244}}
Take the square root of both sides of the equation.
t+\frac{5}{2}=\frac{\sqrt{94245}}{122} t+\frac{5}{2}=-\frac{\sqrt{94245}}{122}
Simplify.
t=\frac{\sqrt{94245}}{122}-\frac{5}{2} t=-\frac{\sqrt{94245}}{122}-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}