Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+7n-1000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-7±\sqrt{7^{2}-4\left(-1000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and -1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-7±\sqrt{49-4\left(-1000\right)}}{2}
Square 7.
n=\frac{-7±\sqrt{49+4000}}{2}
Multiply -4 times -1000.
n=\frac{-7±\sqrt{4049}}{2}
Add 49 to 4000.
n=\frac{\sqrt{4049}-7}{2}
Now solve the equation n=\frac{-7±\sqrt{4049}}{2} when ± is plus. Add -7 to \sqrt{4049}.
n=\frac{-\sqrt{4049}-7}{2}
Now solve the equation n=\frac{-7±\sqrt{4049}}{2} when ± is minus. Subtract \sqrt{4049} from -7.
n=\frac{\sqrt{4049}-7}{2} n=\frac{-\sqrt{4049}-7}{2}
The equation is now solved.
n^{2}+7n-1000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+7n-1000-\left(-1000\right)=-\left(-1000\right)
Add 1000 to both sides of the equation.
n^{2}+7n=-\left(-1000\right)
Subtracting -1000 from itself leaves 0.
n^{2}+7n=1000
Subtract -1000 from 0.
n^{2}+7n+\left(\frac{7}{2}\right)^{2}=1000+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+7n+\frac{49}{4}=1000+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+7n+\frac{49}{4}=\frac{4049}{4}
Add 1000 to \frac{49}{4}.
\left(n+\frac{7}{2}\right)^{2}=\frac{4049}{4}
Factor n^{2}+7n+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{2}\right)^{2}}=\sqrt{\frac{4049}{4}}
Take the square root of both sides of the equation.
n+\frac{7}{2}=\frac{\sqrt{4049}}{2} n+\frac{7}{2}=-\frac{\sqrt{4049}}{2}
Simplify.
n=\frac{\sqrt{4049}-7}{2} n=\frac{-\sqrt{4049}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.