Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a+b=3 ab=1\left(-4\right)=-4
Factor the expression by grouping. First, the expression needs to be rewritten as h^{2}+ah+bh-4. To find a and b, set up a system to be solved.
-1,4 -2,2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4.
-1+4=3 -2+2=0
Calculate the sum for each pair.
a=-1 b=4
The solution is the pair that gives sum 3.
\left(h^{2}-h\right)+\left(4h-4\right)
Rewrite h^{2}+3h-4 as \left(h^{2}-h\right)+\left(4h-4\right).
h\left(h-1\right)+4\left(h-1\right)
Factor out h in the first and 4 in the second group.
\left(h-1\right)\left(h+4\right)
Factor out common term h-1 by using distributive property.
h^{2}+3h-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
h=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Square 3.
h=\frac{-3±\sqrt{9+16}}{2}
Multiply -4 times -4.
h=\frac{-3±\sqrt{25}}{2}
Add 9 to 16.
h=\frac{-3±5}{2}
Take the square root of 25.
h=\frac{2}{2}
Now solve the equation h=\frac{-3±5}{2} when ± is plus. Add -3 to 5.
h=1
Divide 2 by 2.
h=-\frac{8}{2}
Now solve the equation h=\frac{-3±5}{2} when ± is minus. Subtract 5 from -3.
h=-4
Divide -8 by 2.
h^{2}+3h-4=\left(h-1\right)\left(h-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -4 for x_{2}.
h^{2}+3h-4=\left(h-1\right)\left(h+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.