Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

d^{2}-d-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-1\right)±\sqrt{1-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-1\right)±\sqrt{1+16}}{2}
Multiply -4 times -4.
d=\frac{-\left(-1\right)±\sqrt{17}}{2}
Add 1 to 16.
d=\frac{1±\sqrt{17}}{2}
The opposite of -1 is 1.
d=\frac{\sqrt{17}+1}{2}
Now solve the equation d=\frac{1±\sqrt{17}}{2} when ± is plus. Add 1 to \sqrt{17}.
d=\frac{1-\sqrt{17}}{2}
Now solve the equation d=\frac{1±\sqrt{17}}{2} when ± is minus. Subtract \sqrt{17} from 1.
d=\frac{\sqrt{17}+1}{2} d=\frac{1-\sqrt{17}}{2}
The equation is now solved.
d^{2}-d-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
d^{2}-d-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
d^{2}-d=-\left(-4\right)
Subtracting -4 from itself leaves 0.
d^{2}-d=4
Subtract -4 from 0.
d^{2}-d+\left(-\frac{1}{2}\right)^{2}=4+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-d+\frac{1}{4}=4+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
d^{2}-d+\frac{1}{4}=\frac{17}{4}
Add 4 to \frac{1}{4}.
\left(d-\frac{1}{2}\right)^{2}=\frac{17}{4}
Factor d^{2}-d+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
d-\frac{1}{2}=\frac{\sqrt{17}}{2} d-\frac{1}{2}=-\frac{\sqrt{17}}{2}
Simplify.
d=\frac{\sqrt{17}+1}{2} d=\frac{1-\sqrt{17}}{2}
Add \frac{1}{2} to both sides of the equation.