Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

b^{2}+13b-36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-13±\sqrt{13^{2}-4\left(-36\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-13±\sqrt{169-4\left(-36\right)}}{2}
Square 13.
b=\frac{-13±\sqrt{169+144}}{2}
Multiply -4 times -36.
b=\frac{-13±\sqrt{313}}{2}
Add 169 to 144.
b=\frac{\sqrt{313}-13}{2}
Now solve the equation b=\frac{-13±\sqrt{313}}{2} when ± is plus. Add -13 to \sqrt{313}.
b=\frac{-\sqrt{313}-13}{2}
Now solve the equation b=\frac{-13±\sqrt{313}}{2} when ± is minus. Subtract \sqrt{313} from -13.
b^{2}+13b-36=\left(b-\frac{\sqrt{313}-13}{2}\right)\left(b-\frac{-\sqrt{313}-13}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-13+\sqrt{313}}{2} for x_{1} and \frac{-13-\sqrt{313}}{2} for x_{2}.