Solve for a
a=\frac{32\sqrt{3}-28}{143}\approx 0.191787593
a=\frac{-32\sqrt{3}-28}{143}\approx -0.583395985
Share
Copied to clipboard
a^{2}-56a+16-144a^{2}=0
Subtract 144a^{2} from both sides.
-143a^{2}-56a+16=0
Combine a^{2} and -144a^{2} to get -143a^{2}.
a=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\left(-143\right)\times 16}}{2\left(-143\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -143 for a, -56 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-56\right)±\sqrt{3136-4\left(-143\right)\times 16}}{2\left(-143\right)}
Square -56.
a=\frac{-\left(-56\right)±\sqrt{3136+572\times 16}}{2\left(-143\right)}
Multiply -4 times -143.
a=\frac{-\left(-56\right)±\sqrt{3136+9152}}{2\left(-143\right)}
Multiply 572 times 16.
a=\frac{-\left(-56\right)±\sqrt{12288}}{2\left(-143\right)}
Add 3136 to 9152.
a=\frac{-\left(-56\right)±64\sqrt{3}}{2\left(-143\right)}
Take the square root of 12288.
a=\frac{56±64\sqrt{3}}{2\left(-143\right)}
The opposite of -56 is 56.
a=\frac{56±64\sqrt{3}}{-286}
Multiply 2 times -143.
a=\frac{64\sqrt{3}+56}{-286}
Now solve the equation a=\frac{56±64\sqrt{3}}{-286} when ± is plus. Add 56 to 64\sqrt{3}.
a=\frac{-32\sqrt{3}-28}{143}
Divide 56+64\sqrt{3} by -286.
a=\frac{56-64\sqrt{3}}{-286}
Now solve the equation a=\frac{56±64\sqrt{3}}{-286} when ± is minus. Subtract 64\sqrt{3} from 56.
a=\frac{32\sqrt{3}-28}{143}
Divide 56-64\sqrt{3} by -286.
a=\frac{-32\sqrt{3}-28}{143} a=\frac{32\sqrt{3}-28}{143}
The equation is now solved.
a^{2}-56a+16-144a^{2}=0
Subtract 144a^{2} from both sides.
-143a^{2}-56a+16=0
Combine a^{2} and -144a^{2} to get -143a^{2}.
-143a^{2}-56a=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{-143a^{2}-56a}{-143}=-\frac{16}{-143}
Divide both sides by -143.
a^{2}+\left(-\frac{56}{-143}\right)a=-\frac{16}{-143}
Dividing by -143 undoes the multiplication by -143.
a^{2}+\frac{56}{143}a=-\frac{16}{-143}
Divide -56 by -143.
a^{2}+\frac{56}{143}a=\frac{16}{143}
Divide -16 by -143.
a^{2}+\frac{56}{143}a+\left(\frac{28}{143}\right)^{2}=\frac{16}{143}+\left(\frac{28}{143}\right)^{2}
Divide \frac{56}{143}, the coefficient of the x term, by 2 to get \frac{28}{143}. Then add the square of \frac{28}{143} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{56}{143}a+\frac{784}{20449}=\frac{16}{143}+\frac{784}{20449}
Square \frac{28}{143} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{56}{143}a+\frac{784}{20449}=\frac{3072}{20449}
Add \frac{16}{143} to \frac{784}{20449} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{28}{143}\right)^{2}=\frac{3072}{20449}
Factor a^{2}+\frac{56}{143}a+\frac{784}{20449}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{28}{143}\right)^{2}}=\sqrt{\frac{3072}{20449}}
Take the square root of both sides of the equation.
a+\frac{28}{143}=\frac{32\sqrt{3}}{143} a+\frac{28}{143}=-\frac{32\sqrt{3}}{143}
Simplify.
a=\frac{32\sqrt{3}-28}{143} a=\frac{-32\sqrt{3}-28}{143}
Subtract \frac{28}{143} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}