Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-2a-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-12\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-12\right)}}{2}
Square -2.
a=\frac{-\left(-2\right)±\sqrt{4+48}}{2}
Multiply -4 times -12.
a=\frac{-\left(-2\right)±\sqrt{52}}{2}
Add 4 to 48.
a=\frac{-\left(-2\right)±2\sqrt{13}}{2}
Take the square root of 52.
a=\frac{2±2\sqrt{13}}{2}
The opposite of -2 is 2.
a=\frac{2\sqrt{13}+2}{2}
Now solve the equation a=\frac{2±2\sqrt{13}}{2} when ± is plus. Add 2 to 2\sqrt{13}.
a=\sqrt{13}+1
Divide 2+2\sqrt{13} by 2.
a=\frac{2-2\sqrt{13}}{2}
Now solve the equation a=\frac{2±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from 2.
a=1-\sqrt{13}
Divide 2-2\sqrt{13} by 2.
a^{2}-2a-12=\left(a-\left(\sqrt{13}+1\right)\right)\left(a-\left(1-\sqrt{13}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1+\sqrt{13} for x_{1} and 1-\sqrt{13} for x_{2}.