Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+2a-60a-12
Multiply 15 and 4 to get 60.
a^{2}-58a-12
Combine 2a and -60a to get -58a.
factor(a^{2}+2a-60a-12)
Multiply 15 and 4 to get 60.
factor(a^{2}-58a-12)
Combine 2a and -60a to get -58a.
a^{2}-58a-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-58\right)±\sqrt{\left(-58\right)^{2}-4\left(-12\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-58\right)±\sqrt{3364-4\left(-12\right)}}{2}
Square -58.
a=\frac{-\left(-58\right)±\sqrt{3364+48}}{2}
Multiply -4 times -12.
a=\frac{-\left(-58\right)±\sqrt{3412}}{2}
Add 3364 to 48.
a=\frac{-\left(-58\right)±2\sqrt{853}}{2}
Take the square root of 3412.
a=\frac{58±2\sqrt{853}}{2}
The opposite of -58 is 58.
a=\frac{2\sqrt{853}+58}{2}
Now solve the equation a=\frac{58±2\sqrt{853}}{2} when ± is plus. Add 58 to 2\sqrt{853}.
a=\sqrt{853}+29
Divide 58+2\sqrt{853} by 2.
a=\frac{58-2\sqrt{853}}{2}
Now solve the equation a=\frac{58±2\sqrt{853}}{2} when ± is minus. Subtract 2\sqrt{853} from 58.
a=29-\sqrt{853}
Divide 58-2\sqrt{853} by 2.
a^{2}-58a-12=\left(a-\left(\sqrt{853}+29\right)\right)\left(a-\left(29-\sqrt{853}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 29+\sqrt{853} for x_{1} and 29-\sqrt{853} for x_{2}.