Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+2-a=-4
Subtract a from both sides.
a^{2}+2-a+4=0
Add 4 to both sides.
a^{2}+6-a=0
Add 2 and 4 to get 6.
a^{2}-a+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-1\right)±\sqrt{1-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1-24}}{2}
Multiply -4 times 6.
a=\frac{-\left(-1\right)±\sqrt{-23}}{2}
Add 1 to -24.
a=\frac{-\left(-1\right)±\sqrt{23}i}{2}
Take the square root of -23.
a=\frac{1±\sqrt{23}i}{2}
The opposite of -1 is 1.
a=\frac{1+\sqrt{23}i}{2}
Now solve the equation a=\frac{1±\sqrt{23}i}{2} when ± is plus. Add 1 to i\sqrt{23}.
a=\frac{-\sqrt{23}i+1}{2}
Now solve the equation a=\frac{1±\sqrt{23}i}{2} when ± is minus. Subtract i\sqrt{23} from 1.
a=\frac{1+\sqrt{23}i}{2} a=\frac{-\sqrt{23}i+1}{2}
The equation is now solved.
a^{2}+2-a=-4
Subtract a from both sides.
a^{2}-a=-4-2
Subtract 2 from both sides.
a^{2}-a=-6
Subtract 2 from -4 to get -6.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-a+\frac{1}{4}=-6+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-a+\frac{1}{4}=-\frac{23}{4}
Add -6 to \frac{1}{4}.
\left(a-\frac{1}{2}\right)^{2}=-\frac{23}{4}
Factor a^{2}-a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Take the square root of both sides of the equation.
a-\frac{1}{2}=\frac{\sqrt{23}i}{2} a-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
Simplify.
a=\frac{1+\sqrt{23}i}{2} a=\frac{-\sqrt{23}i+1}{2}
Add \frac{1}{2} to both sides of the equation.