Evaluate
a\times \frac{3a-2}{5}
Expand
\frac{3a^{2}-2a}{5}
Share
Copied to clipboard
a^{2}\times 0.2-0.4a\left(1-a\right)+\left(1-a\right)^{2}\times 0\times 3
Multiply 2 and -0.2 to get -0.4.
a^{2}\times 0.2-0.4a+0.4a^{2}+\left(1-a\right)^{2}\times 0\times 3
Use the distributive property to multiply -0.4a by 1-a.
0.6a^{2}-0.4a+\left(1-a\right)^{2}\times 0\times 3
Combine a^{2}\times 0.2 and 0.4a^{2} to get 0.6a^{2}.
0.6a^{2}-0.4a+\left(1-2a+a^{2}\right)\times 0\times 3
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-a\right)^{2}.
0.6a^{2}-0.4a+\left(1-2a+a^{2}\right)\times 0
Multiply 0 and 3 to get 0.
0.6a^{2}-0.4a+0
Anything times zero gives zero.
0.6a^{2}-0.4a
Anything plus zero gives itself.
a^{2}\times 0.2-0.4a\left(1-a\right)+\left(1-a\right)^{2}\times 0\times 3
Multiply 2 and -0.2 to get -0.4.
a^{2}\times 0.2-0.4a+0.4a^{2}+\left(1-a\right)^{2}\times 0\times 3
Use the distributive property to multiply -0.4a by 1-a.
0.6a^{2}-0.4a+\left(1-a\right)^{2}\times 0\times 3
Combine a^{2}\times 0.2 and 0.4a^{2} to get 0.6a^{2}.
0.6a^{2}-0.4a+\left(1-2a+a^{2}\right)\times 0\times 3
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-a\right)^{2}.
0.6a^{2}-0.4a+\left(1-2a+a^{2}\right)\times 0
Multiply 0 and 3 to get 0.
0.6a^{2}-0.4a+0
Anything times zero gives zero.
0.6a^{2}-0.4a
Anything plus zero gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}