Solve for x
x=3\sqrt{7}\approx 7.937253933
x=-3\sqrt{7}\approx -7.937253933
Graph
Share
Copied to clipboard
81+x^{2}=12^{2}
Calculate 9 to the power of 2 and get 81.
81+x^{2}=144
Calculate 12 to the power of 2 and get 144.
x^{2}=144-81
Subtract 81 from both sides.
x^{2}=63
Subtract 81 from 144 to get 63.
x=3\sqrt{7} x=-3\sqrt{7}
Take the square root of both sides of the equation.
81+x^{2}=12^{2}
Calculate 9 to the power of 2 and get 81.
81+x^{2}=144
Calculate 12 to the power of 2 and get 144.
81+x^{2}-144=0
Subtract 144 from both sides.
-63+x^{2}=0
Subtract 144 from 81 to get -63.
x^{2}-63=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-63\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-63\right)}}{2}
Square 0.
x=\frac{0±\sqrt{252}}{2}
Multiply -4 times -63.
x=\frac{0±6\sqrt{7}}{2}
Take the square root of 252.
x=3\sqrt{7}
Now solve the equation x=\frac{0±6\sqrt{7}}{2} when ± is plus.
x=-3\sqrt{7}
Now solve the equation x=\frac{0±6\sqrt{7}}{2} when ± is minus.
x=3\sqrt{7} x=-3\sqrt{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}