Solve for x
x=\frac{\sqrt{3}}{125}-1\approx -0.986143594
x=-\frac{\sqrt{3}}{125}-1\approx -1.013856406
Graph
Share
Copied to clipboard
56250000\left(1+x\right)^{2}=10800
Calculate 7500 to the power of 2 and get 56250000.
56250000\left(1+2x+x^{2}\right)=10800
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
56250000+112500000x+56250000x^{2}=10800
Use the distributive property to multiply 56250000 by 1+2x+x^{2}.
56250000+112500000x+56250000x^{2}-10800=0
Subtract 10800 from both sides.
56239200+112500000x+56250000x^{2}=0
Subtract 10800 from 56250000 to get 56239200.
56250000x^{2}+112500000x+56239200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-112500000±\sqrt{112500000^{2}-4\times 56250000\times 56239200}}{2\times 56250000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 56250000 for a, 112500000 for b, and 56239200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112500000±\sqrt{12656250000000000-4\times 56250000\times 56239200}}{2\times 56250000}
Square 112500000.
x=\frac{-112500000±\sqrt{12656250000000000-225000000\times 56239200}}{2\times 56250000}
Multiply -4 times 56250000.
x=\frac{-112500000±\sqrt{12656250000000000-12653820000000000}}{2\times 56250000}
Multiply -225000000 times 56239200.
x=\frac{-112500000±\sqrt{2430000000000}}{2\times 56250000}
Add 12656250000000000 to -12653820000000000.
x=\frac{-112500000±900000\sqrt{3}}{2\times 56250000}
Take the square root of 2430000000000.
x=\frac{-112500000±900000\sqrt{3}}{112500000}
Multiply 2 times 56250000.
x=\frac{900000\sqrt{3}-112500000}{112500000}
Now solve the equation x=\frac{-112500000±900000\sqrt{3}}{112500000} when ± is plus. Add -112500000 to 900000\sqrt{3}.
x=\frac{\sqrt{3}}{125}-1
Divide -112500000+900000\sqrt{3} by 112500000.
x=\frac{-900000\sqrt{3}-112500000}{112500000}
Now solve the equation x=\frac{-112500000±900000\sqrt{3}}{112500000} when ± is minus. Subtract 900000\sqrt{3} from -112500000.
x=-\frac{\sqrt{3}}{125}-1
Divide -112500000-900000\sqrt{3} by 112500000.
x=\frac{\sqrt{3}}{125}-1 x=-\frac{\sqrt{3}}{125}-1
The equation is now solved.
56250000\left(1+x\right)^{2}=10800
Calculate 7500 to the power of 2 and get 56250000.
56250000\left(1+2x+x^{2}\right)=10800
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
56250000+112500000x+56250000x^{2}=10800
Use the distributive property to multiply 56250000 by 1+2x+x^{2}.
112500000x+56250000x^{2}=10800-56250000
Subtract 56250000 from both sides.
112500000x+56250000x^{2}=-56239200
Subtract 56250000 from 10800 to get -56239200.
56250000x^{2}+112500000x=-56239200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{56250000x^{2}+112500000x}{56250000}=-\frac{56239200}{56250000}
Divide both sides by 56250000.
x^{2}+\frac{112500000}{56250000}x=-\frac{56239200}{56250000}
Dividing by 56250000 undoes the multiplication by 56250000.
x^{2}+2x=-\frac{56239200}{56250000}
Divide 112500000 by 56250000.
x^{2}+2x=-\frac{15622}{15625}
Reduce the fraction \frac{-56239200}{56250000} to lowest terms by extracting and canceling out 3600.
x^{2}+2x+1^{2}=-\frac{15622}{15625}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-\frac{15622}{15625}+1
Square 1.
x^{2}+2x+1=\frac{3}{15625}
Add -\frac{15622}{15625} to 1.
\left(x+1\right)^{2}=\frac{3}{15625}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{3}{15625}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{3}}{125} x+1=-\frac{\sqrt{3}}{125}
Simplify.
x=\frac{\sqrt{3}}{125}-1 x=-\frac{\sqrt{3}}{125}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}