Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

40597719.829956=6371^{2}+x^{2}
Calculate 6371.634 to the power of 2 and get 40597719.829956.
40597719.829956=40589641+x^{2}
Calculate 6371 to the power of 2 and get 40589641.
40589641+x^{2}=40597719.829956
Swap sides so that all variable terms are on the left hand side.
x^{2}=40597719.829956-40589641
Subtract 40589641 from both sides.
x^{2}=8078.829956
Subtract 40589641 from 40597719.829956 to get 8078.829956.
x=\frac{\sqrt{2019707489}}{500} x=-\frac{\sqrt{2019707489}}{500}
Take the square root of both sides of the equation.
40597719.829956=6371^{2}+x^{2}
Calculate 6371.634 to the power of 2 and get 40597719.829956.
40597719.829956=40589641+x^{2}
Calculate 6371 to the power of 2 and get 40589641.
40589641+x^{2}=40597719.829956
Swap sides so that all variable terms are on the left hand side.
40589641+x^{2}-40597719.829956=0
Subtract 40597719.829956 from both sides.
-8078.829956+x^{2}=0
Subtract 40597719.829956 from 40589641 to get -8078.829956.
x^{2}-8078.829956=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-8078.829956\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -8078.829956 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-8078.829956\right)}}{2}
Square 0.
x=\frac{0±\sqrt{32315.319824}}{2}
Multiply -4 times -8078.829956.
x=\frac{0±\frac{\sqrt{2019707489}}{250}}{2}
Take the square root of 32315.319824.
x=\frac{\sqrt{2019707489}}{500}
Now solve the equation x=\frac{0±\frac{\sqrt{2019707489}}{250}}{2} when ± is plus.
x=-\frac{\sqrt{2019707489}}{500}
Now solve the equation x=\frac{0±\frac{\sqrt{2019707489}}{250}}{2} when ± is minus.
x=\frac{\sqrt{2019707489}}{500} x=-\frac{\sqrt{2019707489}}{500}
The equation is now solved.