Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2^{31}\times 4^{50}=2\times 4^{5x}
Multiply both sides of the equation by 2.
2147483648\times 4^{50}=2\times 4^{5x}
Calculate 2 to the power of 31 and get 2147483648.
2147483648\times 1267650600228229401496703205376=2\times 4^{5x}
Calculate 4 to the power of 50 and get 1267650600228229401496703205376.
2722258935367507707706996859454145691648=2\times 4^{5x}
Multiply 2147483648 and 1267650600228229401496703205376 to get 2722258935367507707706996859454145691648.
2\times 4^{5x}=2722258935367507707706996859454145691648
Swap sides so that all variable terms are on the left hand side.
4^{5x}=\frac{2722258935367507707706996859454145691648}{2}
Divide both sides by 2.
4^{5x}=1361129467683753853853498429727072845824
Divide 2722258935367507707706996859454145691648 by 2 to get 1361129467683753853853498429727072845824.
\log(4^{5x})=\log(1361129467683753853853498429727072845824)
Take the logarithm of both sides of the equation.
5x\log(4)=\log(1361129467683753853853498429727072845824)
The logarithm of a number raised to a power is the power times the logarithm of the number.
5x=\frac{\log(1361129467683753853853498429727072845824)}{\log(4)}
Divide both sides by \log(4).
5x=\log_{4}\left(1361129467683753853853498429727072845824\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{65}{5}
Divide both sides by 5.