Evaluate
90\sqrt{15}\approx 348.568501159
Share
Copied to clipboard
2^{2}\times \frac{9}{2\times \frac{5}{5^{3}\sqrt{\frac{3}{5}}}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
4\times \frac{9}{2\times \frac{5}{5^{3}\sqrt{\frac{3}{5}}}}
Calculate 2 to the power of 2 and get 4.
4\times \frac{9}{2\times \frac{5}{125\sqrt{\frac{3}{5}}}}
Calculate 5 to the power of 3 and get 125.
4\times \frac{9}{2\times \frac{5}{125\times \frac{\sqrt{3}}{\sqrt{5}}}}
Rewrite the square root of the division \sqrt{\frac{3}{5}} as the division of square roots \frac{\sqrt{3}}{\sqrt{5}}.
4\times \frac{9}{2\times \frac{5}{125\times \frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
4\times \frac{9}{2\times \frac{5}{125\times \frac{\sqrt{3}\sqrt{5}}{5}}}
The square of \sqrt{5} is 5.
4\times \frac{9}{2\times \frac{5}{125\times \frac{\sqrt{15}}{5}}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
4\times \frac{9}{2\times \frac{5}{25\sqrt{15}}}
Cancel out 5, the greatest common factor in 125 and 5.
4\times \frac{9}{2\times \frac{5\sqrt{15}}{25\left(\sqrt{15}\right)^{2}}}
Rationalize the denominator of \frac{5}{25\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
4\times \frac{9}{2\times \frac{5\sqrt{15}}{25\times 15}}
The square of \sqrt{15} is 15.
4\times \frac{9}{2\times \frac{\sqrt{15}}{5\times 15}}
Cancel out 5 in both numerator and denominator.
4\times \frac{9}{2\times \frac{\sqrt{15}}{75}}
Multiply 5 and 15 to get 75.
4\times \frac{9}{\frac{2\sqrt{15}}{75}}
Express 2\times \frac{\sqrt{15}}{75} as a single fraction.
4\times \frac{9\times 75}{2\sqrt{15}}
Divide 9 by \frac{2\sqrt{15}}{75} by multiplying 9 by the reciprocal of \frac{2\sqrt{15}}{75}.
4\times \frac{9\times 75\sqrt{15}}{2\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{9\times 75}{2\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
4\times \frac{9\times 75\sqrt{15}}{2\times 15}
The square of \sqrt{15} is 15.
4\times \frac{675\sqrt{15}}{2\times 15}
Multiply 9 and 75 to get 675.
4\times \frac{675\sqrt{15}}{30}
Multiply 2 and 15 to get 30.
4\times \frac{45}{2}\sqrt{15}
Divide 675\sqrt{15} by 30 to get \frac{45}{2}\sqrt{15}.
\frac{4\times 45}{2}\sqrt{15}
Express 4\times \frac{45}{2} as a single fraction.
\frac{180}{2}\sqrt{15}
Multiply 4 and 45 to get 180.
90\sqrt{15}
Divide 180 by 2 to get 90.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}