Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

324+x^{2}=6\sqrt{13}
Calculate 18 to the power of 2 and get 324.
x^{2}=6\sqrt{13}-324
Subtract 324 from both sides.
x=i\sqrt{324-6\sqrt{13}} x=-i\sqrt{324-6\sqrt{13}}
The equation is now solved.
324+x^{2}=6\sqrt{13}
Calculate 18 to the power of 2 and get 324.
324+x^{2}-6\sqrt{13}=0
Subtract 6\sqrt{13} from both sides.
x^{2}+324-6\sqrt{13}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(324-6\sqrt{13}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 324-6\sqrt{13} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(324-6\sqrt{13}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{24\sqrt{13}-1296}}{2}
Multiply -4 times 324-6\sqrt{13}.
x=\frac{0±2i\sqrt{324-6\sqrt{13}}}{2}
Take the square root of -1296+24\sqrt{13}.
x=i\sqrt{324-6\sqrt{13}}
Now solve the equation x=\frac{0±2i\sqrt{324-6\sqrt{13}}}{2} when ± is plus.
x=-i\sqrt{324-6\sqrt{13}}
Now solve the equation x=\frac{0±2i\sqrt{324-6\sqrt{13}}}{2} when ± is minus.
x=i\sqrt{324-6\sqrt{13}} x=-i\sqrt{324-6\sqrt{13}}
The equation is now solved.