Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

10609+10t^{2}=99^{2}-97^{2}
Calculate 103 to the power of 2 and get 10609.
10609+10t^{2}=9801-97^{2}
Calculate 99 to the power of 2 and get 9801.
10609+10t^{2}=9801-9409
Calculate 97 to the power of 2 and get 9409.
10609+10t^{2}=392
Subtract 9409 from 9801 to get 392.
10t^{2}=392-10609
Subtract 10609 from both sides.
10t^{2}=-10217
Subtract 10609 from 392 to get -10217.
t^{2}=-\frac{10217}{10}
Divide both sides by 10.
t=\frac{\sqrt{102170}i}{10} t=-\frac{\sqrt{102170}i}{10}
The equation is now solved.
10609+10t^{2}=99^{2}-97^{2}
Calculate 103 to the power of 2 and get 10609.
10609+10t^{2}=9801-97^{2}
Calculate 99 to the power of 2 and get 9801.
10609+10t^{2}=9801-9409
Calculate 97 to the power of 2 and get 9409.
10609+10t^{2}=392
Subtract 9409 from 9801 to get 392.
10609+10t^{2}-392=0
Subtract 392 from both sides.
10217+10t^{2}=0
Subtract 392 from 10609 to get 10217.
10t^{2}+10217=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
t=\frac{0±\sqrt{0^{2}-4\times 10\times 10217}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 0 for b, and 10217 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 10\times 10217}}{2\times 10}
Square 0.
t=\frac{0±\sqrt{-40\times 10217}}{2\times 10}
Multiply -4 times 10.
t=\frac{0±\sqrt{-408680}}{2\times 10}
Multiply -40 times 10217.
t=\frac{0±2\sqrt{102170}i}{2\times 10}
Take the square root of -408680.
t=\frac{0±2\sqrt{102170}i}{20}
Multiply 2 times 10.
t=\frac{\sqrt{102170}i}{10}
Now solve the equation t=\frac{0±2\sqrt{102170}i}{20} when ± is plus.
t=-\frac{\sqrt{102170}i}{10}
Now solve the equation t=\frac{0±2\sqrt{102170}i}{20} when ± is minus.
t=\frac{\sqrt{102170}i}{10} t=-\frac{\sqrt{102170}i}{10}
The equation is now solved.