Evaluate
\frac{101}{4}=25.25
Factor
\frac{101}{2 ^ {2}} = 25\frac{1}{4} = 25.25
Share
Copied to clipboard
1^{3}-\left(-2^{3}\right)-\left(-2^{4}\right)\times 4^{0}+1^{4}\times 2^{-2}
To multiply powers of the same base, add their exponents. Add 1 and -3 to get -2.
1-\left(-2^{3}\right)-\left(-2^{4}\right)\times 4^{0}+1^{4}\times 2^{-2}
Calculate 1 to the power of 3 and get 1.
1-\left(-8\right)-\left(-2^{4}\right)\times 4^{0}+1^{4}\times 2^{-2}
Calculate 2 to the power of 3 and get 8.
1+8-\left(-2^{4}\right)\times 4^{0}+1^{4}\times 2^{-2}
The opposite of -8 is 8.
9-\left(-2^{4}\right)\times 4^{0}+1^{4}\times 2^{-2}
Add 1 and 8 to get 9.
9-\left(-16\times 4^{0}\right)+1^{4}\times 2^{-2}
Calculate 2 to the power of 4 and get 16.
9-\left(-16\right)+1^{4}\times 2^{-2}
Calculate 4 to the power of 0 and get 1.
9+16+1^{4}\times 2^{-2}
The opposite of -16 is 16.
25+1^{4}\times 2^{-2}
Add 9 and 16 to get 25.
25+1\times 2^{-2}
Calculate 1 to the power of 4 and get 1.
25+1\times \frac{1}{4}
Calculate 2 to the power of -2 and get \frac{1}{4}.
25+\frac{1}{4}
Multiply 1 and \frac{1}{4} to get \frac{1}{4}.
\frac{101}{4}
Add 25 and \frac{1}{4} to get \frac{101}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}