Skip to main content
Solve for x
Tick mark Image
Graph

Share

{(0.766)} ^ {2} = {(x)} ^ {2} + {(1.1547)} ^ {2} - 2 x \cdot 1.1547 \cdot 0.7535633923016379
Evaluate trigonometric functions in the problem
0.586756=x^{2}+1.1547^{2}-2x\times 1.1547\times 0.7535633923016379
Calculate 0.766 to the power of 2 and get 0.586756.
0.586756=x^{2}+1.33333209-2x\times 1.1547\times 0.7535633923016379
Calculate 1.1547 to the power of 2 and get 1.33333209.
0.586756=x^{2}+1.33333209-2.3094x\times 0.7535633923016379
Multiply 2 and 1.1547 to get 2.3094.
0.586756=x^{2}+1.33333209-1.74027929818140256626x
Multiply 2.3094 and 0.7535633923016379 to get 1.74027929818140256626.
x^{2}+1.33333209-1.74027929818140256626x=0.586756
Swap sides so that all variable terms are on the left hand side.
x^{2}+1.33333209-1.74027929818140256626x-0.586756=0
Subtract 0.586756 from both sides.
x^{2}+0.74657609-1.74027929818140256626x=0
Subtract 0.586756 from 1.33333209 to get 0.74657609.
x^{2}-1.74027929818140256626x+0.74657609=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1.74027929818140256626\right)±\sqrt{\left(-1.74027929818140256626\right)^{2}-4\times 0.74657609}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1.74027929818140256626 for b, and 0.74657609 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1.74027929818140256626\right)±\sqrt{3.0285720356787550653656094620057136903876-4\times 0.74657609}}{2}
Square -1.74027929818140256626 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-1.74027929818140256626\right)±\sqrt{3.0285720356787550653656094620057136903876-2.98630436}}{2}
Multiply -4 times 0.74657609.
x=\frac{-\left(-1.74027929818140256626\right)±\sqrt{0.0422676756787550653656094620057136903876}}{2}
Add 3.0285720356787550653656094620057136903876 to -2.98630436 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-1.74027929818140256626\right)±\frac{\sqrt{105669189196887663414023655014284225969}}{50000000000000000000}}{2}
Take the square root of 0.0422676756787550653656094620057136903876.
x=\frac{1.74027929818140256626±\frac{\sqrt{105669189196887663414023655014284225969}}{50000000000000000000}}{2}
The opposite of -1.74027929818140256626 is 1.74027929818140256626.
x=\frac{\sqrt{105669189196887663414023655014284225969}+87013964909070128313}{2\times 50000000000000000000}
Now solve the equation x=\frac{1.74027929818140256626±\frac{\sqrt{105669189196887663414023655014284225969}}{50000000000000000000}}{2} when ± is plus. Add 1.74027929818140256626 to \frac{\sqrt{105669189196887663414023655014284225969}}{50000000000000000000}.
x=\frac{\sqrt{105669189196887663414023655014284225969}+87013964909070128313}{100000000000000000000}
Divide \frac{87013964909070128313+\sqrt{105669189196887663414023655014284225969}}{50000000000000000000} by 2.
x=\frac{87013964909070128313-\sqrt{105669189196887663414023655014284225969}}{2\times 50000000000000000000}
Now solve the equation x=\frac{1.74027929818140256626±\frac{\sqrt{105669189196887663414023655014284225969}}{50000000000000000000}}{2} when ± is minus. Subtract \frac{\sqrt{105669189196887663414023655014284225969}}{50000000000000000000} from 1.74027929818140256626.
x=\frac{87013964909070128313-\sqrt{105669189196887663414023655014284225969}}{100000000000000000000}
Divide \frac{87013964909070128313-\sqrt{105669189196887663414023655014284225969}}{50000000000000000000} by 2.
x=\frac{\sqrt{105669189196887663414023655014284225969}+87013964909070128313}{100000000000000000000} x=\frac{87013964909070128313-\sqrt{105669189196887663414023655014284225969}}{100000000000000000000}
The equation is now solved.
{(0.766)} ^ {2} = {(x)} ^ {2} + {(1.1547)} ^ {2} - 2 x \cdot 1.1547 \cdot 0.7535633923016379
Evaluate trigonometric functions in the problem
0.586756=x^{2}+1.1547^{2}-2x\times 1.1547\times 0.7535633923016379
Calculate 0.766 to the power of 2 and get 0.586756.
0.586756=x^{2}+1.33333209-2x\times 1.1547\times 0.7535633923016379
Calculate 1.1547 to the power of 2 and get 1.33333209.
0.586756=x^{2}+1.33333209-2.3094x\times 0.7535633923016379
Multiply 2 and 1.1547 to get 2.3094.
0.586756=x^{2}+1.33333209-1.74027929818140256626x
Multiply 2.3094 and 0.7535633923016379 to get 1.74027929818140256626.
x^{2}+1.33333209-1.74027929818140256626x=0.586756
Swap sides so that all variable terms are on the left hand side.
x^{2}-1.74027929818140256626x=0.586756-1.33333209
Subtract 1.33333209 from both sides.
x^{2}-1.74027929818140256626x=-0.74657609
Subtract 1.33333209 from 0.586756 to get -0.74657609.
x^{2}-1.74027929818140256626x=-\frac{74657609}{100000000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-1.74027929818140256626x+\left(-0.87013964909070128313\right)^{2}=-\frac{74657609}{100000000}+\left(-0.87013964909070128313\right)^{2}
Divide -1.74027929818140256626, the coefficient of the x term, by 2 to get -0.87013964909070128313. Then add the square of -0.87013964909070128313 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.74027929818140256626x+0.7571430089196887663414023655014284225969=-\frac{74657609}{100000000}+0.7571430089196887663414023655014284225969
Square -0.87013964909070128313 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.74027929818140256626x+0.7571430089196887663414023655014284225969=\frac{105669189196887663414023655014284225969}{10000000000000000000000000000000000000000}
Add -\frac{74657609}{100000000} to 0.7571430089196887663414023655014284225969 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.87013964909070128313\right)^{2}=\frac{105669189196887663414023655014284225969}{10000000000000000000000000000000000000000}
Factor x^{2}-1.74027929818140256626x+0.7571430089196887663414023655014284225969. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.87013964909070128313\right)^{2}}=\sqrt{\frac{105669189196887663414023655014284225969}{10000000000000000000000000000000000000000}}
Take the square root of both sides of the equation.
x-0.87013964909070128313=\frac{\sqrt{105669189196887663414023655014284225969}}{100000000000000000000} x-0.87013964909070128313=-\frac{\sqrt{105669189196887663414023655014284225969}}{100000000000000000000}
Simplify.
x=\frac{\sqrt{105669189196887663414023655014284225969}+87013964909070128313}{100000000000000000000} x=\frac{87013964909070128313-\sqrt{105669189196887663414023655014284225969}}{100000000000000000000}
Add 0.87013964909070128313 to both sides of the equation.