Solve for x
x=\frac{\left(y-1\right)^{2}-40}{8}
Solve for y (complex solution)
y=-2\sqrt{2\left(x+5\right)}+1
y=2\sqrt{2\left(x+5\right)}+1
Solve for y
y=-2\sqrt{2\left(x+5\right)}+1
y=2\sqrt{2\left(x+5\right)}+1\text{, }x\geq -5
Graph
Share
Copied to clipboard
y^{2}-2y+1=8\left(x+5\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
y^{2}-2y+1=8x+40
Use the distributive property to multiply 8 by x+5.
8x+40=y^{2}-2y+1
Swap sides so that all variable terms are on the left hand side.
8x=y^{2}-2y+1-40
Subtract 40 from both sides.
8x=y^{2}-2y-39
Subtract 40 from 1 to get -39.
\frac{8x}{8}=\frac{y^{2}-2y-39}{8}
Divide both sides by 8.
x=\frac{y^{2}-2y-39}{8}
Dividing by 8 undoes the multiplication by 8.
x=\frac{y^{2}}{8}-\frac{y}{4}-\frac{39}{8}
Divide y^{2}-2y-39 by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}