Solve for x
x=\frac{7\sqrt{2}}{2}+2\approx 6.949747468
x=-\frac{7\sqrt{2}}{2}+2\approx -2.949747468
Graph
Share
Copied to clipboard
x^{2}-4x+4+\left(x-2\right)^{2}=7^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-4x+4=7^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2x^{2}-4x+4-4x+4=7^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+4+4=7^{2}
Combine -4x and -4x to get -8x.
2x^{2}-8x+8=7^{2}
Add 4 and 4 to get 8.
2x^{2}-8x+8=49
Calculate 7 to the power of 2 and get 49.
2x^{2}-8x+8-49=0
Subtract 49 from both sides.
2x^{2}-8x-41=0
Subtract 49 from 8 to get -41.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-41\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -41 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-41\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-41\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+328}}{2\times 2}
Multiply -8 times -41.
x=\frac{-\left(-8\right)±\sqrt{392}}{2\times 2}
Add 64 to 328.
x=\frac{-\left(-8\right)±14\sqrt{2}}{2\times 2}
Take the square root of 392.
x=\frac{8±14\sqrt{2}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±14\sqrt{2}}{4}
Multiply 2 times 2.
x=\frac{14\sqrt{2}+8}{4}
Now solve the equation x=\frac{8±14\sqrt{2}}{4} when ± is plus. Add 8 to 14\sqrt{2}.
x=\frac{7\sqrt{2}}{2}+2
Divide 8+14\sqrt{2} by 4.
x=\frac{8-14\sqrt{2}}{4}
Now solve the equation x=\frac{8±14\sqrt{2}}{4} when ± is minus. Subtract 14\sqrt{2} from 8.
x=-\frac{7\sqrt{2}}{2}+2
Divide 8-14\sqrt{2} by 4.
x=\frac{7\sqrt{2}}{2}+2 x=-\frac{7\sqrt{2}}{2}+2
The equation is now solved.
x^{2}-4x+4+\left(x-2\right)^{2}=7^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-4x+4=7^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2x^{2}-4x+4-4x+4=7^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+4+4=7^{2}
Combine -4x and -4x to get -8x.
2x^{2}-8x+8=7^{2}
Add 4 and 4 to get 8.
2x^{2}-8x+8=49
Calculate 7 to the power of 2 and get 49.
2x^{2}-8x=49-8
Subtract 8 from both sides.
2x^{2}-8x=41
Subtract 8 from 49 to get 41.
\frac{2x^{2}-8x}{2}=\frac{41}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{41}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=\frac{41}{2}
Divide -8 by 2.
x^{2}-4x+\left(-2\right)^{2}=\frac{41}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{41}{2}+4
Square -2.
x^{2}-4x+4=\frac{49}{2}
Add \frac{41}{2} to 4.
\left(x-2\right)^{2}=\frac{49}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{49}{2}}
Take the square root of both sides of the equation.
x-2=\frac{7\sqrt{2}}{2} x-2=-\frac{7\sqrt{2}}{2}
Simplify.
x=\frac{7\sqrt{2}}{2}+2 x=-\frac{7\sqrt{2}}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}