Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+10x+25=1x\left(1-x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+10x+25=1x-x^{2}
Use the distributive property to multiply 1x by 1-x.
x^{2}+10x+25-x=-x^{2}
Subtract 1x from both sides.
x^{2}+9x+25=-x^{2}
Combine 10x and -x to get 9x.
x^{2}+9x+25+x^{2}=0
Add x^{2} to both sides.
2x^{2}+9x+25=0
Combine x^{2} and x^{2} to get 2x^{2}.
x=\frac{-9±\sqrt{9^{2}-4\times 2\times 25}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 9 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 2\times 25}}{2\times 2}
Square 9.
x=\frac{-9±\sqrt{81-8\times 25}}{2\times 2}
Multiply -4 times 2.
x=\frac{-9±\sqrt{81-200}}{2\times 2}
Multiply -8 times 25.
x=\frac{-9±\sqrt{-119}}{2\times 2}
Add 81 to -200.
x=\frac{-9±\sqrt{119}i}{2\times 2}
Take the square root of -119.
x=\frac{-9±\sqrt{119}i}{4}
Multiply 2 times 2.
x=\frac{-9+\sqrt{119}i}{4}
Now solve the equation x=\frac{-9±\sqrt{119}i}{4} when ± is plus. Add -9 to i\sqrt{119}.
x=\frac{-\sqrt{119}i-9}{4}
Now solve the equation x=\frac{-9±\sqrt{119}i}{4} when ± is minus. Subtract i\sqrt{119} from -9.
x=\frac{-9+\sqrt{119}i}{4} x=\frac{-\sqrt{119}i-9}{4}
The equation is now solved.
x^{2}+10x+25=1x\left(1-x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+10x+25=1x-x^{2}
Use the distributive property to multiply 1x by 1-x.
x^{2}+10x+25-x=-x^{2}
Subtract 1x from both sides.
x^{2}+9x+25=-x^{2}
Combine 10x and -x to get 9x.
x^{2}+9x+25+x^{2}=0
Add x^{2} to both sides.
2x^{2}+9x+25=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+9x=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+9x}{2}=-\frac{25}{2}
Divide both sides by 2.
x^{2}+\frac{9}{2}x=-\frac{25}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=-\frac{25}{2}+\left(\frac{9}{4}\right)^{2}
Divide \frac{9}{2}, the coefficient of the x term, by 2 to get \frac{9}{4}. Then add the square of \frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{2}x+\frac{81}{16}=-\frac{25}{2}+\frac{81}{16}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{2}x+\frac{81}{16}=-\frac{119}{16}
Add -\frac{25}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{4}\right)^{2}=-\frac{119}{16}
Factor x^{2}+\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{-\frac{119}{16}}
Take the square root of both sides of the equation.
x+\frac{9}{4}=\frac{\sqrt{119}i}{4} x+\frac{9}{4}=-\frac{\sqrt{119}i}{4}
Simplify.
x=\frac{-9+\sqrt{119}i}{4} x=\frac{-\sqrt{119}i-9}{4}
Subtract \frac{9}{4} from both sides of the equation.