Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}+9x^{2}+27x+27-x^{3}=279
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+3\right)^{3}.
9x^{2}+27x+27=279
Combine x^{3} and -x^{3} to get 0.
9x^{2}+27x+27-279=0
Subtract 279 from both sides.
9x^{2}+27x-252=0
Subtract 279 from 27 to get -252.
x^{2}+3x-28=0
Divide both sides by 9.
a+b=3 ab=1\left(-28\right)=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-28. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-4 b=7
The solution is the pair that gives sum 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
Rewrite x^{2}+3x-28 as \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
Factor out x in the first and 7 in the second group.
\left(x-4\right)\left(x+7\right)
Factor out common term x-4 by using distributive property.
x=4 x=-7
To find equation solutions, solve x-4=0 and x+7=0.
x^{3}+9x^{2}+27x+27-x^{3}=279
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+3\right)^{3}.
9x^{2}+27x+27=279
Combine x^{3} and -x^{3} to get 0.
9x^{2}+27x+27-279=0
Subtract 279 from both sides.
9x^{2}+27x-252=0
Subtract 279 from 27 to get -252.
x=\frac{-27±\sqrt{27^{2}-4\times 9\left(-252\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 27 for b, and -252 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\times 9\left(-252\right)}}{2\times 9}
Square 27.
x=\frac{-27±\sqrt{729-36\left(-252\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-27±\sqrt{729+9072}}{2\times 9}
Multiply -36 times -252.
x=\frac{-27±\sqrt{9801}}{2\times 9}
Add 729 to 9072.
x=\frac{-27±99}{2\times 9}
Take the square root of 9801.
x=\frac{-27±99}{18}
Multiply 2 times 9.
x=\frac{72}{18}
Now solve the equation x=\frac{-27±99}{18} when ± is plus. Add -27 to 99.
x=4
Divide 72 by 18.
x=-\frac{126}{18}
Now solve the equation x=\frac{-27±99}{18} when ± is minus. Subtract 99 from -27.
x=-7
Divide -126 by 18.
x=4 x=-7
The equation is now solved.
x^{3}+9x^{2}+27x+27-x^{3}=279
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+3\right)^{3}.
9x^{2}+27x+27=279
Combine x^{3} and -x^{3} to get 0.
9x^{2}+27x=279-27
Subtract 27 from both sides.
9x^{2}+27x=252
Subtract 27 from 279 to get 252.
\frac{9x^{2}+27x}{9}=\frac{252}{9}
Divide both sides by 9.
x^{2}+\frac{27}{9}x=\frac{252}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+3x=\frac{252}{9}
Divide 27 by 9.
x^{2}+3x=28
Divide 252 by 9.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
Add 28 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Simplify.
x=4 x=-7
Subtract \frac{3}{2} from both sides of the equation.