Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+9-\left(x+1\right)\left(x-1\right)-2\left(2x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9-\left(x^{2}-1\right)-2\left(2x+4\right)
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}+6x+9-x^{2}+1-2\left(2x+4\right)
To find the opposite of x^{2}-1, find the opposite of each term.
6x+9+1-2\left(2x+4\right)
Combine x^{2} and -x^{2} to get 0.
6x+10-2\left(2x+4\right)
Add 9 and 1 to get 10.
6x+10-4x-8
Use the distributive property to multiply -2 by 2x+4.
2x+10-8
Combine 6x and -4x to get 2x.
2x+2
Subtract 8 from 10 to get 2.
x^{2}+6x+9-\left(x+1\right)\left(x-1\right)-2\left(2x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9-\left(x^{2}-1\right)-2\left(2x+4\right)
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}+6x+9-x^{2}+1-2\left(2x+4\right)
To find the opposite of x^{2}-1, find the opposite of each term.
6x+9+1-2\left(2x+4\right)
Combine x^{2} and -x^{2} to get 0.
6x+10-2\left(2x+4\right)
Add 9 and 1 to get 10.
6x+10-4x-8
Use the distributive property to multiply -2 by 2x+4.
2x+10-8
Combine 6x and -4x to get 2x.
2x+2
Subtract 8 from 10 to get 2.