Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+202x+10201+10\left(x+101\right)+9=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+101\right)^{2}.
x^{2}+202x+10201+10x+1010+9=0
Use the distributive property to multiply 10 by x+101.
x^{2}+212x+10201+1010+9=0
Combine 202x and 10x to get 212x.
x^{2}+212x+11211+9=0
Add 10201 and 1010 to get 11211.
x^{2}+212x+11220=0
Add 11211 and 9 to get 11220.
x=\frac{-212±\sqrt{212^{2}-4\times 11220}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 212 for b, and 11220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-212±\sqrt{44944-4\times 11220}}{2}
Square 212.
x=\frac{-212±\sqrt{44944-44880}}{2}
Multiply -4 times 11220.
x=\frac{-212±\sqrt{64}}{2}
Add 44944 to -44880.
x=\frac{-212±8}{2}
Take the square root of 64.
x=-\frac{204}{2}
Now solve the equation x=\frac{-212±8}{2} when ± is plus. Add -212 to 8.
x=-102
Divide -204 by 2.
x=-\frac{220}{2}
Now solve the equation x=\frac{-212±8}{2} when ± is minus. Subtract 8 from -212.
x=-110
Divide -220 by 2.
x=-102 x=-110
The equation is now solved.
x^{2}+202x+10201+10\left(x+101\right)+9=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+101\right)^{2}.
x^{2}+202x+10201+10x+1010+9=0
Use the distributive property to multiply 10 by x+101.
x^{2}+212x+10201+1010+9=0
Combine 202x and 10x to get 212x.
x^{2}+212x+11211+9=0
Add 10201 and 1010 to get 11211.
x^{2}+212x+11220=0
Add 11211 and 9 to get 11220.
x^{2}+212x=-11220
Subtract 11220 from both sides. Anything subtracted from zero gives its negation.
x^{2}+212x+106^{2}=-11220+106^{2}
Divide 212, the coefficient of the x term, by 2 to get 106. Then add the square of 106 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+212x+11236=-11220+11236
Square 106.
x^{2}+212x+11236=16
Add -11220 to 11236.
\left(x+106\right)^{2}=16
Factor x^{2}+212x+11236. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+106\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x+106=4 x+106=-4
Simplify.
x=-102 x=-110
Subtract 106 from both sides of the equation.