Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8^{2}x^{2}+2x=0
Expand \left(8x\right)^{2}.
64x^{2}+2x=0
Calculate 8 to the power of 2 and get 64.
x\left(64x+2\right)=0
Factor out x.
x=0 x=-\frac{1}{32}
To find equation solutions, solve x=0 and 64x+2=0.
8^{2}x^{2}+2x=0
Expand \left(8x\right)^{2}.
64x^{2}+2x=0
Calculate 8 to the power of 2 and get 64.
x=\frac{-2±\sqrt{2^{2}}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\times 64}
Take the square root of 2^{2}.
x=\frac{-2±2}{128}
Multiply 2 times 64.
x=\frac{0}{128}
Now solve the equation x=\frac{-2±2}{128} when ± is plus. Add -2 to 2.
x=0
Divide 0 by 128.
x=-\frac{4}{128}
Now solve the equation x=\frac{-2±2}{128} when ± is minus. Subtract 2 from -2.
x=-\frac{1}{32}
Reduce the fraction \frac{-4}{128} to lowest terms by extracting and canceling out 4.
x=0 x=-\frac{1}{32}
The equation is now solved.
8^{2}x^{2}+2x=0
Expand \left(8x\right)^{2}.
64x^{2}+2x=0
Calculate 8 to the power of 2 and get 64.
\frac{64x^{2}+2x}{64}=\frac{0}{64}
Divide both sides by 64.
x^{2}+\frac{2}{64}x=\frac{0}{64}
Dividing by 64 undoes the multiplication by 64.
x^{2}+\frac{1}{32}x=\frac{0}{64}
Reduce the fraction \frac{2}{64} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{32}x=0
Divide 0 by 64.
x^{2}+\frac{1}{32}x+\left(\frac{1}{64}\right)^{2}=\left(\frac{1}{64}\right)^{2}
Divide \frac{1}{32}, the coefficient of the x term, by 2 to get \frac{1}{64}. Then add the square of \frac{1}{64} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{32}x+\frac{1}{4096}=\frac{1}{4096}
Square \frac{1}{64} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{1}{64}\right)^{2}=\frac{1}{4096}
Factor x^{2}+\frac{1}{32}x+\frac{1}{4096}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{64}\right)^{2}}=\sqrt{\frac{1}{4096}}
Take the square root of both sides of the equation.
x+\frac{1}{64}=\frac{1}{64} x+\frac{1}{64}=-\frac{1}{64}
Simplify.
x=0 x=-\frac{1}{32}
Subtract \frac{1}{64} from both sides of the equation.