Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7^{2}x^{2}+12x-6=0
Expand \left(7x\right)^{2}.
49x^{2}+12x-6=0
Calculate 7 to the power of 2 and get 49.
x=\frac{-12±\sqrt{12^{2}-4\times 49\left(-6\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 12 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 49\left(-6\right)}}{2\times 49}
Square 12.
x=\frac{-12±\sqrt{144-196\left(-6\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{-12±\sqrt{144+1176}}{2\times 49}
Multiply -196 times -6.
x=\frac{-12±\sqrt{1320}}{2\times 49}
Add 144 to 1176.
x=\frac{-12±2\sqrt{330}}{2\times 49}
Take the square root of 1320.
x=\frac{-12±2\sqrt{330}}{98}
Multiply 2 times 49.
x=\frac{2\sqrt{330}-12}{98}
Now solve the equation x=\frac{-12±2\sqrt{330}}{98} when ± is plus. Add -12 to 2\sqrt{330}.
x=\frac{\sqrt{330}-6}{49}
Divide -12+2\sqrt{330} by 98.
x=\frac{-2\sqrt{330}-12}{98}
Now solve the equation x=\frac{-12±2\sqrt{330}}{98} when ± is minus. Subtract 2\sqrt{330} from -12.
x=\frac{-\sqrt{330}-6}{49}
Divide -12-2\sqrt{330} by 98.
x=\frac{\sqrt{330}-6}{49} x=\frac{-\sqrt{330}-6}{49}
The equation is now solved.
7^{2}x^{2}+12x-6=0
Expand \left(7x\right)^{2}.
49x^{2}+12x-6=0
Calculate 7 to the power of 2 and get 49.
49x^{2}+12x=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{49x^{2}+12x}{49}=\frac{6}{49}
Divide both sides by 49.
x^{2}+\frac{12}{49}x=\frac{6}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}+\frac{12}{49}x+\left(\frac{6}{49}\right)^{2}=\frac{6}{49}+\left(\frac{6}{49}\right)^{2}
Divide \frac{12}{49}, the coefficient of the x term, by 2 to get \frac{6}{49}. Then add the square of \frac{6}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{49}x+\frac{36}{2401}=\frac{6}{49}+\frac{36}{2401}
Square \frac{6}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{49}x+\frac{36}{2401}=\frac{330}{2401}
Add \frac{6}{49} to \frac{36}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{49}\right)^{2}=\frac{330}{2401}
Factor x^{2}+\frac{12}{49}x+\frac{36}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{49}\right)^{2}}=\sqrt{\frac{330}{2401}}
Take the square root of both sides of the equation.
x+\frac{6}{49}=\frac{\sqrt{330}}{49} x+\frac{6}{49}=-\frac{\sqrt{330}}{49}
Simplify.
x=\frac{\sqrt{330}-6}{49} x=\frac{-\sqrt{330}-6}{49}
Subtract \frac{6}{49} from both sides of the equation.